大创项目推荐 深度学习+opencv+python实现车道线检测 - 自动驾驶

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 卷积神经网络
    • 3.1卷积层
    • 3.2 池化层
    • 3.3 激活函数:
    • 3.4 全连接层
    • 3.5 使用tensorflow中keras模块实现卷积神经网络
  • 4 YOLOV5
  • 6 数据集处理
  • 7 模型训练
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的自动驾驶车道线检测算法研究与实现 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

从汽车的诞生到现在为止已经有一百多年的历史了,随着车辆的增多,交通事故频繁发生,成为社会发展的隐患,人们的生命安全受到了严重威胁。多起事故发生原因中,都有一个共同点,那就是因为视觉问题使驾驶员在行车时获取不准确的信息导致交通事故的发生。为了解决这个问题,高级驾驶辅助系统(ADAS)应运而生,其中车道线检测就是ADAS中相当重要的一个环节。利用机器视觉来检测车道线相当于给汽车安装上了一双“眼睛”,从而代替人眼来获取车道线信息,在一定程度上可以减少发生交通事故的概率。
本项目基于yolov5实现图像车道线检测。

2 实现效果

在这里插入图片描述

3 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。
在这里插入图片描述

3.1卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。
在这里插入图片描述

3.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。
在这里插入图片描述

3.3 激活函数:

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

3.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

3.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):def __init__(self):super().__init__()self.conv1 = tf.keras.layers.Conv2D(filters=32,             # 卷积层神经元(卷积核)数目kernel_size=[5, 5],     # 感受野大小padding='same',         # padding策略(vaild 或 same)activation=tf.nn.relu   # 激活函数)self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.conv2 = tf.keras.layers.Conv2D(filters=64,kernel_size=[5, 5],padding='same',activation=tf.nn.relu)self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)self.dense2 = tf.keras.layers.Dense(units=10)def call(self, inputs):x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]x = self.pool1(x)                       # [batch_size, 14, 14, 32]x = self.conv2(x)                       # [batch_size, 14, 14, 64]x = self.pool2(x)                       # [batch_size, 7, 7, 64]x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]x = self.dense1(x)                      # [batch_size, 1024]x = self.dense2(x)                      # [batch_size, 10]output = tf.nn.softmax(x)return output

4 YOLOV5

简介
基于卷积神经网络(convolutional neural network, CNN)的目标检测模型研究可按检测阶段分为两类,一 类 是 基 于 候 选 框
的 两 阶 段 检 测 , R-CNN 、 Fast R-CNN、Faster R-CNN、Mask R-CNN都是基于
目标候选框的两阶段检测方法;另一类是基于免候选框的单阶段检测,SSD、YOLO系列都是典型的基于回归思想的单阶段检测方法。

YOLOv5 目标检测模型 2020年由Ultralytics发布的YOLOv5在网络轻量化 上贡献明显,检测速度更快也更加易于部署。与之前
版本不同,YOLOv5 实现了网络架构的系列化,分别 是YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、
YOLOv5x。这5种模型的结构相似,通过改变宽度倍 数(Depth multiple)来改变卷积过程中卷积核的数量, 通 过 改 变 深 度 倍 数
(Width multiple) 来 改 变 BottleneckC3(带3个CBS模块的BottleneckCSP结构)中
C3的数量,从而实现不同网络深度和不同网络宽度之 间的组合,达到精度与效率的平衡。YOLOv5各版本性能如图所示:

在这里插入图片描述

模型结构图如下:

在这里插入图片描述

YOLOv5s 模型算法流程和原理

YOLOv5s模型主要算法工作流程原理:

(1) 原始图像输入部分加入了图像填充、自适应 锚框计算、Mosaic数据增强来对数据进行处理增加了 检测的辨识度和准确度。

(2) 主干网络中采用Focus结构和CSP1_X (X个残差结构) 结构进行特征提取。在特征生成部分, 使用基于SPP优化后的SPPF结构来完成。

(3) 颈部层应用路径聚合网络和CSP2_X进行特征融合。

(4) 使用GIOU_Loss作为损失函数。

关键代码:

6 数据集处理

获取摔倒数据集准备训练,如果没有准备好的数据集,可自己标注,但过程会相对繁琐

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

数据保存

点击save,保存txt。

在这里插入图片描述

7 模型训练

配置超参数
主要是配置data文件夹下的yaml中的数据集位置和种类:

在这里插入图片描述

配置模型
这里主要是配置models目录下的模型yaml文件,主要是进去后修改nc这个参数来进行类别的修改。

在这里插入图片描述

目前支持的模型种类如下所示:

在这里插入图片描述
训练过程
在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/306770.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数字IC/FPGA——锁存器/触发器/寄存器

本文主要介绍以下几点: 什么是触发器和锁存器门电路和触发器的区别什么是电平钟控触发器电平钟控触发器触发器和锁存器的区别触发器的分类方式:逻辑功能、触发方式、电路结构、存储数据原理、构成触发器的基本器件寄存器利用移位寄存器实现串并转换或并…

WordPress LayerSlider插件SQL注入漏洞复现(CVE-2024-2879)

0x01 免责声明 请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。工具来自网络,安全性自测,如有侵权请联系删…

LiveNVR监控流媒体Onvif/RTSP功能-概览负载统计展示取流中、播放中、录像中点击柱状图快速定位相关会话

LiveNVR概览负载统计展示取流中、播放中、录像中点击柱状图快速定位相关会话 1、负载信息说明2、快速定位会话3、RTSP/HLS/FLV/RTMP拉流Onvif流媒体服务 1、负载信息说明 实时展示取流中、播放中、录像中等使用数目 取流中:当前拉流到平台的实时通道数目播放中&am…

基于单片机的智能锁芯报警系统设计

摘 要:在传统的智能锁芯报警系统中,存在响应时间较长的问题,为此,提出一种基于单片机的智能锁芯报警系统。通过控制模块、智能锁芯设置模块、报警模块、中断模块、液晶模块等,建立系统总体框架,根据系统总体框架,通过单片机、电源适配器、智能锁芯、报警器、LED灯等…

浏览器工作原理与实践--HTTP/2:如何提升网络速度

上一篇文章我们聊了HTTP/1.1的发展史,虽然HTTP/1.1已经做了大量的优化,但是依然存在很多性能瓶颈,依然不能满足我们日益变化的新需求,所以就有了我们今天要聊的HTTP/2。 本文我们依然从需求的层面来谈,先分析HTTP/1.1存…

CMake构建OpenCv并导入QT项目过程中出现的问题汇总

前言 再此之前请确保你的环境变量是否配置,这是总共需要配置的环境变量 E:\cmake\bin E:\OpenCv\opencv\build\x64\vc15\bin F:\Qt\Tools\mingw730_64\bin F:\Qt\5.12.4\mingw73_64\bin 问题一: CMake Error: CMake was unable to find a build program…

Java 中文官方教程 2022 版(四十五)

原文:docs.oracle.com/javase/tutorial/reallybigindex.html 教程:自定义网络 原文:docs.oracle.com/javase/tutorial/networking/index.html Java 平台备受推崇,部分原因是其适用于编写使用和与互联网资源以及万维网进行交互的程…

Git Clone succeeded, but checkout failed

Clone succeeded, but checkout failed: Filename too long 原因: 由于系统限制,路径太长,无法检出 解决方案: # git允许长路径,在已clone的仓库执行 git config core.longpaths true # 再次检出 git ch…

云原生数据库海山(He3DB)PostgreSQL版核心设计理念

本期深入解析云原生数据库海山PostgreSQL版(以下简称“He3DB”)的设计理念,探讨在设计云原生数据库过程中遇到的工程挑战,并展示He3DB如何有效地解决这些问题。 He3DB是移动云受到 Amazon Aurora 论文启发而独立自主设计的云原生数…

SpringBoot3 + Vue3 + Uniapp + uView + Elenment 实现动态二级分类以及二级分类的管理

SpringBoot3 Vue3 Uniapp uView Elenment 实现动态二级分类以及二级分类的管理 1. 效果展示1.1 前端显示效果1.2 后台管理一级分类1.3 后台管理二级分类 2. 后端代码2.1 GoodsCategoryController.java2.2.1 GoodsCategoryMapper.java2.2.2 GoodsCategorySonMapper.java2.3.…

性能升级,INDEMIND机器人AI Kit助力产业再蜕变

随着机器人进入到越来越多的生产生活场景中,作业任务和环境变得更加复杂,机器人需要更精准、更稳定、更智能、更灵敏的自主导航能力。 自主导航技术作为机器人技术的核心,虽然经过了多年发展,取得了长足进步,但在实践…

QA测试开发工程师面试题满分问答11: web前端页面视频组件无法播放如何定位bug

当 web 前端页面的视频组件无法播放时,可以从以下维度进行分析和定位可能的 bug,分析维度包括但不限于:前端功能点、缓存、异常、后端功能点、资源占用、并发、网络等: 前端功能点: HTML5 视频支持:检查视频…

FPGA基于VCU的H265视频解压缩,解码后HDMI2.0输出,支持4K60帧,提供工程源码+开发板+技术支持

目录 1、前言免责声明 2、相关方案推荐我这里已有的视频图像编解码方案4K60帧HDMI2.0输入,H265视频压缩方案 3、详细设计方案设计框图FPGA开发板解压视频源Zynq UltraScale VCUVideo Frame Buffer ReadVideo MixerHDMI 1.4/2.0 Transmitter SubsystemVideo PHY Cont…

基于springboot+vue实现的计算机等级考试报名系统

作者主页:Java码库 主营内容:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app等设计与开发。 收藏点赞不迷路 关注作者有好处 文末获取源码 技术选型 【后端】:Java 【框架】:spring…

淘宝Api接口开发系列,商品详情数据,搜索商品列表数据,无货源采集上货模式,数据分析

淘宝API接口开发涉及多个方面,包括获取商品详情数据、搜索商品列表数据、无货源采集上货模式以及数据分析等。今天给大家介绍下通过封装商品ID获取淘宝商品详情数据接口方法,支持高并发请求。下面我将分别对这些方面进行简要介绍。 1. 商品详情数据接口…

低频电磁仿真 | 新能源汽车性能提升的利器

永磁同步电机 新能源汽车的心脏 近年来,全球变暖的趋势日益加剧,极端天气事件层出不穷,这些现象都反映出当前气候形势的严峻性。为了应对这一全球性挑战,各国纷纷采取行动,制定了一系列降碳、减碳的措施。中国在2020年…

第十二届蓝桥杯大赛软件赛省赛Java 大学 B 组题解

1、ASC public class Main {public static void main(String[] args) {System.out.println(

如何使用 Grafana 监控文件系统状态

当 JuiceFS 文件系统部署完成并投入生产环境,接下来就需要着手解决一个非常重要的问题 —— 如何实时监控它的运行状态?毕竟,它可能正在为关键的业务应用或容器工作负载提供持久化存储支持,任何小小的故障或性能下降都可能造成不利…

基于jmeter的性能全流程测试

01、做性能测试的步骤 1、服务器性能监控 首先要在对应服务器上面安装性能监控工具,比如linux系统下的服务器,可以选择nmon或者其他的监控工具,然后在jmeter模拟场景跑脚本的时候,同时启动监控工具,这样就可以获得jm…

[lesson21]对象的构造顺序

对象的构造顺序 对象的构造顺序一 对于局部对象 当程序执行流到达对象的定义语句时进行构造 对象的构造顺序二 对于堆对象 当程序执行流到达new语句时创建对象使用new创建对象将自动触发构造函数的调用 s/20230724024159.png?origin_urlimage-2.png&pos_idimg-HTOH6…