ChatGPT深度科研应用、数据分析及机器学习、AI绘图与高效论文撰写

2022年11月30日,可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT3.5,将人工智能的发展推向了一个新的高度。2023年4月,更强版本的ChatGPT4.0上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。2023年11月7日,OpenAI首届开发者大会被称为“科技界的春晚”,吸引了全球广大用户的关注,GPT商店更是显现了OpenAI旨在构建AI生态的野心。因此,为了帮助广大科研人员更加熟练地掌握ChatGPT4.0在数据分析、自动生成代码等方面的强大功能,同时更加系统地学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,旨在帮助大家掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络、YOLO目标检测、自编码器等)的基本原理及Python、PyTorch代码实现方法

原文链接icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247685073&idx=4&sn=99b61a5c7c88a4f55a01a8bb1ecb3fe9&chksm=fa774ceccd00c5faedc9b624b3f96eafbd354fc50a914131dc37f76aeb53a8691e6a44a4b2bb&token=83514680&lang=zh_CN#rd

第一章、2024大语言模型最新进展介绍与ChatGPT4基础入门

1、2024 AIGC技术最新进展介绍

2、ChatGPT概述(GPT-1、GPT-2、GPT-3、GPT-3.5、GPT-4模型的演变)

3、(实操演练)ChatGPT对话初体验(注册与充值、购买方法)

4、(实操演练)GPT-4与GPT-3.5的区别

5、(实操演练)GPT-4与国内外其他大语言模型(Claude、谷歌Gemini、百度文心一言、科大讯飞星火、阿里巴巴通义千问、月之暗面Kimi等)的区别

6、(实操演练)ChatGPT科研必备GPTs(Data Interpreter、Wolfram、WebPilot、MixerBox Scholar、ScholarAI、Show Me、AskYourPDF等)

7、(实操演练)定制自己的专属GPTs(制作专属GPTs的两种方式:聊天/配置参数、利用Knowledge上传本地知识库提升专属GPTs性能、利用Actions通过API获取外界信息、专属GPTs的分享)

8、(实操演练)GPT Store简介与使用(信息检索与快速整理、论文撰写、论文翻译与润色、代码编写等)

9、案例演示与实操练习

第二章、ChatGPT4 提示词使用方法与技巧

1、(实操演练)ChatGPT Prompt (提示词)使用技巧(为ChatGPT设定身份、明确任务内容、提供任务相关的背景、举一个参考范例、指定返回的答案格式等)

2、(实操演练)常用的ChatGPT提示词模板

3、(实操演练)基于模板的ChatGPT提示词优化

4、(实操演练)利用ChatGPT4 及插件优化提示词

5、(实操演练)通过promptperfect.jina.ai优化提示词

6、(实操演练)利用ChatGPT4 及插件生成提示词

7、(实操演练)ChatGPT4突破Token限制实现接收或输出万字长文(什么是Token?Token数与字符数之间的互相换算、五种方法提交超过Token限制的文本、四种方法让ChatGPT的输出突破Token限制)

8、(实操演练)控制ChatGPT的输出长度(使用修饰语、限定回答的范围、通过上下文限定、限定数量等)

9、(实操演练)利用ChatGPT4 及插件保存喜欢的ChatGPT提示词并一键调用

10、(实操演练)利用ChatGPT4实现网页版游戏的设计、代码自动生成与运行

11、案例演示与实操练习

第三章、ChatGPT4助力日常生活、学习与工作

1、(实操演练)ChatGPT4助力中小学生功课辅导(写作文、作文批改、求解数学题、练习英语听说读写、物理计算、化学计算等)

2、(实操演练)ChatGPT4助力文案撰写与润色修改

3、(实操演练)ChatGPT4助力家庭健康管理(化验单结果解读、就诊咨询与初步诊断、常见慢病管理、日常营养膳食建议等)

4、(实操演练)ChatGPT4助力大学生求职与就业(撰写简历、模拟面试、职业规划等)

5、(实操演练)ChatGPT4助力商业工作(行业竞品检索与分析、产品创意设计与建议、推广营销策略与方案制定、撰写合同)

6、(实操演练)利用ChatGPT4 创建精美的思维导图

7、(实操演练)利用ChatGPT4 生成流程图、甘特图

8、(实操演练)利用ChatGPT4 制作PPT

9、(实操演练)利用ChatGPT4自动创建视频

10、(实操演练)ChatGPT4辅助教师高效备课(苏格拉底式教学、为不同专业学生生成不同的教学内容、围绕知识点生成不同难度的题目检测学生的学习效果等)

11、(实操演练)ChatGPT4辅助学生高效学习(利用插件生成个性化学习计划)

12、案例演示与实操练习

第四章、ChatGPT4助力信息检索、总结分析、论文写作与投稿

1、(实操演练)传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)

2、(实操演练)利用ChatGPT4 实现联网检索文献

3、(实操演练)利用ChatGPT4阅读与总结分析学术论文内容(三句话摘要、子弹式要点摘要、QA摘要、表格摘要、关键词与关键句提取、页面定位、多文档对比、情感分析)

4、(实操演练)利用ChatGPT4 总结Youtube视频内容

5、(实操演练)利用ChatGPT4完成学术论文的选题设计与优化

6、(实操演练)利用ChatGPT4自动生成论文的总体框架、论文摘要、前言介绍、文献综述、完整长篇论文等

7、(实操演练)利用ChatGPT4完成论文翻译(指定翻译角色和翻译领域、提供背景提示)

8、(实操演练)利用ChatGPT4实现论文语法校正

9、(实操演练)利用ChatGPT4完成段落结构及句子逻辑润色

10、(实操演练)利用ChatGPT4完成论文降重

11、(实操演练)利用ChatGPT4完成论文评审意见的撰写与回复

12、案例演示与实操练习

第五章、ChatGPT4助力Python编程入门、科学计算、数据可视化、数据预处理

1、(实操演练)Python环境搭建(Python软件下载、安装与版本选择;PyCharm下载、安装;Python之Hello World;第三方模块的安装与使用;Python 2.x与Python 3.x对比)

2、(实操演练)Python基本语法(Python变量命名规则;Python基本数学运算;Python常用变量类型的定义与操作;Python程序注释)

3、(实操演练)Python流程控制(条件判断;for循环;while循环;break和continue)

4、(实操演练)Python函数与对象(函数的定义与调用;函数的参数传递与返回值;变量作用域与全局变量;对象的创建与使用)

5、(实操演练)Matplotlib的安装与图形绘制(设置散点、线条、坐标轴、图例、注解等属性;绘制多图;图的嵌套;折线图、柱状图、饼图、地图等各种图形的绘制)

6、(实操演练)Seaborn、Bokeh、Pyecharts等高级绘图库的安装与使用(动态交互图的绘制、开发大数据可视化页面等)

7、(实操演练)科学计算模块库(Numpy的安装;ndarray类型属性与数组的创建;数组索引与切片;Numpy常用函数简介与使用)

8、(实操演练)利用ChatGPT4上传本地数据(Excel/CSV表格、txt文本、PDF、图片等)

9、(实操演练)利用ChatGPT4 爬取第三方网站数据

10、(实操演练)利用ChatGPT4 实现常见文件格式之间的转换

11、(实操演练)利用ChatGPT4 实现图像处理(图像缩放、旋转、裁剪、去噪与去模糊)

12、(实操演练)利用ChatGPT4 实现描述性统计分析(数据的频数分析:统计直方图;数据的集中趋势分析:数据的相关分析)

13、(实操演练)常用的数据预处理方法(数据标准化与归一化、数据异常值与缺失值处理、数据离散化及编码处理、手动生成新特征)

14、(实操演练)融合ChatGPT 4与Python的数据预处理代码自动生成与运行

15、(实操演练)利用ChatGPT4实现数据统计分析与可视化(自动生成统计图表)

16、(实操演练)利用ChatGPT4 实现代码逐行讲解

17、(实操演练)利用ChatGPT4 实现代码Bug调试与自动修改

18、案例演示与实操练习

第六章、ChatGPT4助力机器学习建模

1、BP神经网络的基本原理(人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?)

2、(实操演练)BP神经网络的Python代码实现(划分训练集和测试集、数据归一化)

3、(实操演练)BP神经网络参数的优化(隐含层神经元个数、学习率、初始权值和阈值等如何设置?什么是交叉验证?)

4、(实操演练)值得研究的若干问题(欠拟合与过拟合、评价指标选择、样本不平衡等)

5、(实操演练)前向型神经网络中的ChatGPT提示词库讲解

6、(实操演练)利用ChatGPT4实现BP神经网络、极限学习机模型的代码自动生成与运行

7、KNN分类模型(KNN算法的核心思想、距离度量方式的选择、K值的选取)

8、朴素贝叶斯分类模型(伯努利朴素贝叶斯BernoulliNB、类朴素贝叶斯CategoricalNB、高斯朴素贝叶斯besfGaussianNB、多项式朴素贝叶斯MultinomialNB、补充朴素贝叶斯ComplementNB)

9、SVM的工作原理(核函数的作用是什么?什么是支持向量?

10、SVM扩展知识(如何解决多分类问题?)

11、(实操演练)KNN、贝叶斯分类与SVM中的ChatGPT提示词库讲解

12、(实操演练)利用ChatGPT4实现KNN、贝叶斯分类、SVM模型的代码自动生成与运行

13、决策树的工作原理(微软小冰读心术的启示;什么是信息熵和信息增益?ID3算法和C4.5算法的区别与联系);决策树除了建模型之外,还可以帮我们做什么事情?

14、随机森林的工作原理(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”的本质是什么?怎样可视化、解读随机森林的结果?)

15、Bagging与Boosting的区别与联系

16、AdaBoost vs. Gradient Boosting的工作原理

17、(实操演练)常用的GBDT算法框架(XGBoost、LightGBM)

18、(实操演练)决策树、随机森林、XGBoost、LightGBM中的ChatGPT提示词库讲解

19、(实操演练)利用ChatGPT4实现决策树、随机森林、XGBoost、LightGBM模型的代码自动生成与运行

20、案例演示与实操练习

第七章、ChatGPT 4助力机器学习模型优化:变量降维与特征选择

1、主成分分析(PCA)的基本原理

2、偏最小二乘(PLS)的基本原理

3、(实操演练)常见的特征选择方法(优化搜索、Filter和Wrapper等;前向与后向选择法;区间法;无信息变量消除法;正则稀疏优化方法等)

4、遗传算法(Genetic Algorithm, GA)的基本原理(以遗传算法为代表的群优化算法的基本思想是什么?选择、交叉、变异三个算子的作用分别是什么?)

5、(实操演练)PCA、PLS、特征选择、群优化算法的ChatGPT提示词库讲解

6、(实操演练)利用ChatGPT4 及插件实现变量降维与特征选择算法的代码自动生成与运行

7、案例演示与实操练习

第八章、ChatGPT 4助力卷积神经网络建模

1、深度学习简介(深度学习大事记、深度学习与传统机器学习的区别与联系)

2、卷积神经网络的基本原理(什么是卷积核、池化核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?)

3、卷积神经网络的进化史:LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系

4、(实操演练)利用PyTorch构建卷积神经网络(Convolution层、Batch Normalization层、Pooling层、Dropout层、Flatten层等)

5、(实操演练)卷积神经网络调参技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?)

6、(实操演练)卷积神经网络中的ChatGPT提示词库讲解

7、(实操演练)利用ChatGPT4 及插件实现卷积神经网络模型的代码自动生成与运行

(1)CNN预训练模型实现物体识别;

(2)利用卷积神经网络抽取抽象特征;

(3)自定义卷积神经网络拓扑结构

8、案例演示与实操练习

第九章、ChatGPT 4助力迁移学习建模

1、迁移学习算法的基本原理(为什么需要迁移学习?迁移学习的基本思想是什么?)

2、(实操演练)基于深度神经网络模型的迁移学习算法

3、(实操演练)迁移学习中的ChatGPT提示词库讲解

4、(实操演练)利用ChatGPT4及插件实现迁移学习模型的代码自动生成与运行

5、实操练习

第十章、ChatGPT 4助力生成式对抗网络建模

1、生成式对抗网络GAN(什么是对抗生成网络?为什么需要对抗生成网络?对抗生成网络可以帮我们做什么?GAN给我们带来的启示)

2、GAN的基本原理及GAN进化史

3、(实操演练)生成式对抗网络中的ChatGPT提示词库讲解

4、(实操演练)利用ChatGPT4 及插件实现生成式对抗网络模型的代码自动生成与运行

5、实操练习

第十一章、ChatGPT 4助力RNN、LSTM建模

1、循环神经网络RNN的基本工作原理

2、长短时记忆网络LSTM的基本工作原理

3、(实操演练)RNN与LSTM中的ChatGPT提示词库讲解

4、(实操演练)利用ChatGPT4 及插件实现RNN、LSTM模型的代码自动生成与运行

5、案例演示与实操练习

第十二章、ChatGPT 4助力YOLO目标检测建模

1、什么是目标检测?目标检测与目标识别的区别与联系

2、YOLO模型的工作原理,YOLO模型与传统目标检测算法的区别

3、(实操演练)YOLO模型中的ChatGPT提示词库讲解

4、(实操演练)利用ChatGPT4 及插件实现YOLO目标检测模型的代码自动生成与运行

(1)利用预训练好的YOLO模型实现目标检测(图像检测、视频检测、摄像头实时检测);

(2)数据标注演示(LabelImage使用方法介绍);

(3)训练自己的目标检测数据集

5、案例演示与实操练习

第十三章、ChatGPT 4助力自编码器建模

1、什么是自编码器(Auto-Encoder, AE)?

2、经典的几种自编码器模型原理介绍(AE、Denoising AE, Masked AE)

3、(实操演练)自编码器模型中的ChatGPT提示词库讲解

4、(实操演练)利用ChatGPT4 及插件实现自编码器模型的代码自动生成与运行

(1)基于自编码器的噪声去除;

(2)基于自编码器的手写数字特征提取与重构;

5、案例演示与实操练习

第十四章、ChatGPT4助力机器学习与深度学习建模的行业应用

1、(实操演练)利用ChatGPT4实现近红外光谱分析模型的建立、代码自动生成与运行

2、(实操演练)利用ChatGPT4实现生物医学信号(时间序列、图像、视频数据)分类识别与回归拟合模型的建立、代码自动生成与运行

3、(实操演练)利用ChatGPT4实现遥感图像目标检测、地物分类及语义分割模型的建立、代码自动生成与运行

4、(实操演练)利用ChatGPT4实现大气污染物预测模型的建立、代码自动生成与运行

5、(实操演练)利用ChatGPT4实现自然语言处理模型的建立、代码自动生成与运行

6、案例演示与实操练习

第十五章、ChatGPT 4 助力深度学习模型可解释性与可视化方法

1、什么是模型可解释性?为什么需要对深度学习模型进行解释?

2、常用的可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?

3、类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)、等方法原理讲解

4、t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征

5、(实操演练)深度学习模型可解释性与可视化中的ChatGPT提示词库讲解

6、(实操演练)利用ChatGPT4 及插件实现深度学习模型可视化的代码自动生成与运行

7、案例演示与实操练习

第十六章、ChatGPT 4助力AI绘图技术

1、生成式模型简介(生成式对抗网络、变分自编码器、扩散模型等)

2、(实操演练)利用ChatGPT4 DALL.E 3生成图像(下载图像、3种不同分辨率、修改图像)

3、(实操演练)ChatGPT4 DALL.E 3常用的提示词库(广告海报、Logo、3D模型、插画、产品包装、烹饪演示、产品外观设计、UI设计、吉祥物设计等)

4、(实操演练)ChatGPT4 DALL.E 3中的多种视图(正视图、后视图、侧视图、四分之三视图、鸟瞰视图、全景视图、第一人称视角、分割视图、截面视图等)

5、(实操演练)ChatGPT4 DALL.E 3中的多种光效(电致发光、化学发光、生物荧光、极光闪耀、全息光等)

6、(实操演练)ChatGPT4 DALL.E 3格子布局与角色一致性的实现

7、(实操演练)ChatGPT4 DALL.E 3生成动图GIF

8、(实操演练)Midjourney工具使用讲解

9、(实操演练)Stable Diffusion工具使用讲解

10、案例演示与实操练习

第十七章、GPT 4 API接口调用与完整项目开发

1、(实操演练)GPT模型API接口的调用方法(API Key的申请、API Key接口调用方法与参数说明)

2、(实操演练)利用GPT4实现完整项目开发

(1)聊天机器人的开发

(2)利用GPT API和Text Embedding生成文本的特征向量

(3)构建基于多模态(语音、文本、图像)的阿尔茨海默病早期筛查程序

3、案例演示与实操练习

第十八章、课程总结与答疑讨论

1、总结与答疑

2、相关学习资料分享与拷贝(图书推荐等)

原文链接icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247685073&idx=4&sn=99b61a5c7c88a4f55a01a8bb1ecb3fe9&chksm=fa774ceccd00c5faedc9b624b3f96eafbd354fc50a914131dc37f76aeb53a8691e6a44a4b2bb&token=83514680&lang=zh_CN#rd

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/308021.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【opencv】示例-neural_network.cpp 使用机器学习模块创建并训练一个简单的多层感知机(神经网络)模型...

#include <opencv2/ml/ml.hpp> // 引入OpenCV的机器学习模块using namespace std; // 使用标准命名空间 using namespace cv; // 使用OpenCV命名空间 using namespace cv::ml; // 使用OpenCV机器学习命名空间int main() {//创建随机训练数据Mat_<float> data(100, …

部署HDFS集群(完全分布式模式、hadoop用户控制集群、hadoop-3.3.4+安装包)

目录 前置 一、上传&解压 &#xff08;一 &#xff09;上传 &#xff08;二&#xff09;解压 二、修改配置文件 &#xff08;一&#xff09;配置workers文件 &#xff08;二&#xff09;配置hadoop-env.sh文件 &#xff08;三&#xff09;配置core-site.xml文件 &…

JS sort方法踩坑

JavaScript的sort()方法在默认情况下将数组元素视为字符串进行排序&#xff0c;而不是按照数字的大小。因此&#xff0c;对于包含数字的数组&#xff0c;sort()方法会按照字符串的排序规则进行排序。 例如&#xff0c;对于[2, 11]这个数组&#xff0c;按照字符串的排序规则&…

从 iPhone 上的短信中恢复已删除的图片的可靠方法

您可能在浏览消息聊天时不小心删除了一些文本和照片。事实上&#xff0c;如果这些消息对你来说意义重大&#xff0c;那对你来说可能会很麻烦。当发生意外情况时&#xff0c;您可能不想恢复整个聊天&#xff0c;而是恢复其中的附件。 好了&#xff0c;这篇文章主要是讲如何灵活…

Kubernetes学习笔记12

k8s核心概念&#xff1a;控制器&#xff1a; 我们删除Pod是可以直接删除的&#xff0c;如果生产环境中的误操作&#xff0c;Pod同样也会被轻易地被删除掉。 所以&#xff0c;在K8s中引入另外一个概念&#xff1a;Controller&#xff08;控制器&#xff09;的概念&#xff0c;…

AI PC元年,华为的一张航海图、一艘渡轮和一张船票

今天&#xff0c;从学术研究者到产业投资者&#xff0c;无不认为大模型掀起了一场人工智能的完美风暴。 所谓“完美风暴”&#xff0c;指的是一项新技术的各个要素&#xff0c;以新的方式互相影响、彼此加强&#xff0c;组合在一起形成了摧枯拉朽般的力量。 而我们每个人&#…

【C++成长记】C++入门 | 类和对象(上) |面向过程和面向对象初步认识、类的引入、类的定义、类的访问限定符及封装

&#x1f40c;博主主页&#xff1a;&#x1f40c;​倔强的大蜗牛&#x1f40c;​ &#x1f4da;专栏分类&#xff1a;C❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 一、面向过程和面向对象初步认识 C语言是面向过程的&#xff0c;关注的是过程&#xff0c;分析出求解问题的步…

你的高佣副业不二之选,开始流量卡推广,一文看懂号卡推广

在这个信息化的时代&#xff0c;网络已成为人们生活中不可或缺的一部分。然而&#xff0c;在享受着便捷与高效的同时&#xff0c;我们也必须面对一个现实问题&#xff0c;也就是高昂的流量费用。为了解决这一困扰广大用户的痛点&#xff0c;我们今天带来了一个极具吸引力的机会…

Sonatype Nexus 服务器迁移

因为服务器的升级和调整&#xff0c;有时候会对安装 Sonatype Nexus 的服务器进行迁移到新服务器上。 从技术架构上来说&#xff0c;Sonatype Nexus 我们使用的是 AWS 的存储&#xff0c;所以我们并不需要拷贝大量的数据。 文件夹结构 在备份和恢复之前&#xff0c;我们需要…

11 Php学习:函数

PHP 内建函数Array 函数 PHP Array 函数是 PHP 核心的组成部分。无需安装即可使用这些函数。 创建 PHP 函数 当您需要在 PHP 中封装一段可重复使用的代码块时&#xff0c;可以使用函数。下面详细解释如何创建 PHP 函数并举例说明。 创建 PHP 函数的语法 PHP 函数的基…

前端CSS讲义1

什么是 CSS? CSS 指层叠样式表 样式定义如何显示 HTML 元素 样式通常存储在样式表中 把样式添加到 HTML 4.0 中&#xff0c;是为了解决内容与表现分离的问题 外部样式表可以极大提高工作效率 外部样式表通常存储在 CSS 文件中 多个样式定义可层叠为一 样式对网页中元素…

【opencv】示例-morphology2.cpp 形态学操作:膨胀、腐蚀、开运算、闭运算

element_shape MORPH_ELLIPSE; element_shape MORPH_RECT element_shape MORPH_CROSS; // 包含必要的OpenCV头文件 #include "opencv2/imgproc.hpp" // 图像处理 #include "opencv2/imgcodecs.hpp" // 图像编码解码 #include "opencv2/highgui.hpp…

2024年认证杯数学建模挑战赛C题全解析

2024年认证杯C题的已经完成啦&#xff0c;包括参考论文&#xff0c;模型代码&#xff0c;分享给大家&#xff5e; 问题分析 对于这些问题&#xff0c;我们首先需要确定影响日光辐射降低效应的关键参数&#xff0c;例如海盐气溶胶的浓度、粒子大小、分布以及喷洒高度和范围。同…

【央国企专场】——国家电网

国家电网目录 一、电网介绍1、核心业务2、电网组成 二、公司待遇三、公司招聘1、招聘平台2、考试安排2.3 考试内容 一、电网介绍 1、核心业务 国家电网公司&#xff08;State Grid Corporation of China&#xff0c;简称SGCC&#xff09;是中国最大的国有企业之一&#xff0c…

Vue3——html-doc-ja(html导出为word的js库)

一、下载 官方地址 html-doc-js - npm npm install html-doc-js 二、使用方法 // 使用页面中引入 import exportWord from html-doc-js// 配置项以及实现下载方法 const wrap document.getElementById(test)const config {document:document, //默认当前文档的document…

H2O-3机器学习平台源码编译的各种坑

H2O-3机器学习平台是一个非常适合非专业人士学习机器学习的平台&#xff0c;自带WebUI&#xff0c;效果还是蛮不错的&#xff0c;官方也提供了jar包&#xff0c;一条命令就能直接运行&#xff0c;非常方便&#xff0c;但最近有源码编译的需求&#xff0c;实际操作过程中&#x…

【计算机毕业设计】日用百货交易网站——后附源码

&#x1f389;**欢迎来到我的技术世界&#xff01;**&#x1f389; &#x1f4d8; 博主小档案&#xff1a; 一名来自世界500强的资深程序媛&#xff0c;毕业于国内知名985高校。 &#x1f527; 技术专长&#xff1a; 在深度学习任务中展现出卓越的能力&#xff0c;包括但不限于…

Chatgpt掘金之旅—有爱AI商业实战篇|播客剧本写作|(十三)

演示站点&#xff1a; https://ai.uaai.cn 对话模块 官方论坛&#xff1a; www.jingyuai.com 京娱AI 一、AI技术创业播客剧本写作服务有哪些机会&#xff1f; 人工智能&#xff08;AI&#xff09;技术作为当今科技创新的前沿领域&#xff0c;为创业者提供了广阔的机会和挑战。…

4、jvm-垃圾收集算法与垃圾收集器

垃圾收集算法 分代收集理论 当前虚拟机的垃圾收集都采用分代收集算法&#xff0c;这种算法没有什么新的思想&#xff0c;只是根据对象存活周期的不同将内存分为几块。一般将java堆分为新生代和老年代&#xff0c;这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。 比如…

最新Zibll子比主题V7.1版本源码 全新推出开心版

源码下载地址&#xff1a;Zibll子比主题V7.1.zip