分类预测 | Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别

分类预测 | Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别

目录

    • 分类预测 | Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别
      • 分类效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别;
多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。
2.数据输入120个特征,输出8个类别,三个主程序,依次运行;
3.可视化展示分类准确率;
4.运行环境matlab2023b及以上。

迁移学习(Transfer Learning):迁移学习是指将在一个任务上学到的知识迁移到另一个相关任务上的技术。在本场景中,迁移学习可以用于从已有的数据集或模型中学习到的知识,来帮助解决多特征分类或故障识别问题。

GASF(Gramian Angular Summation Field):GASF是一种用于表示时间序列数据的可视化技术,通过将时间序列数据转换为二维图像来捕捉其特征。GASF可以将时间序列数据转换为格拉姆角场,提供了一种在图像领域中应用卷积神经网络的方式。

CNN(Convolutional Neural Network):卷积神经网络是一种深度学习模型,特别适用于处理具有网格结构数据(如图像)的任务。在这个场景中,CNN用于处理GASF表示的时间序列数据,以从中提取特征。

Multihead Attention(多头注意力机制):多头注意力机制是模型中的一种关键机制,用于捕捉输入序列中的重要信息。它将输入序列分成多个子序列,并对每个子序列进行注意力计算。这种机制可以使模型在学习过程中关注不同子序列的不同方面。

模型描述

在这里插入图片描述

多头注意力机制(Multi-Head Attention)是一种用于处理序列数据的注意力机制的扩展形式。它通过使用多个独立的注意力头来捕捉不同方面的关注点,从而更好地捕捉序列数据中的相关性和重要性。在多变量时间序列预测中,多头注意力机制可以帮助模型对各个变量之间的关系进行建模,并从中提取有用的特征。贝叶斯优化卷积神经网络-长短期记忆网络融合多头注意力机制多变量时间序列预测模型可以更好地处理多变量时间序列数据的复杂性。它可以自动搜索最优超参数配置,并通过卷积神经网络提取局部特征,利用LSTM网络建模序列中的长期依赖关系,并借助多头注意力机制捕捉变量之间的关联性,从而提高时间序列预测的准确性和性能。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别

%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------% 从data中获取当前样本数据featureData = data(sampleIdx, 1:end - 1);X = featureData;m = length(X);% 将数据归一化到[0, 1]X_normalized = (X - min(X)) / (max(X) - min(X));% 分成Q个分位箱(按照个数),从小往大:1234Q = 4;% 将每个元素映射到分位箱1234,X_Q = ones(1, numDataPoints);threshold = 0;% 初始化阈值thresholds = ones(1, Q + 1);for i = 2 : Q + 1% 循环计算小于当前阈值的数据个数,达到阈值时跳出循环while sum(X_normalized < threshold) < numDataPoints * (i - 1) / Qthreshold = threshold + 0.0001;end% 记录每一个分位箱的阈值thresholds(i) = threshold;% 将原始数据向量变成对应的分位箱次序向量X_Q(find(X_normalized < thresholds(i) & X_normalized > thresholds(i - 1))) = i - 1;endsum_11 = 0; sum_12 = 0; sum_13 = 0; sum_14 = 0;sum_21 = 0; sum_22 = 0; sum_23 = 0; sum_24 = 0;sum_31 = 0; sum_32 = 0; sum_33 = 0; sum_34 = 0;sum_41 = 0; sum_42 = 0; sum_43 = 0; sum_44 = 0;
for i = 1:numImagesimageFileName = sortedImageFiles(i).name;imagePath = fullfile(inputFolder, imageFileName);% 读取图像img = imread(imagePath);% 调整图像尺寸    
%% 设置训练选项
options = trainingOptions('adam', ...            % 使用Adam优化器'MiniBatchSize', 15, ...                     % 每个迭代的迷你批次大小'MaxEpochs', 5, ...                          % 最大训练迭代次数'InitialLearnRate', 0.001, ...               % 初始学习率'Shuffle', 'every-epoch', ...                % 每个迭代都对数据进行洗牌'Verbose', false, ...                        % 不显示训练过程中的详细输出'Plots', 'training-progress');               % 显示训练进度图

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/308031.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

自动化运维工具Ansible

ansible 主要的意义在于可以 提高运维工作效率&#xff0c;降低成本提高准确度 资料 Ansible中文权威指南 离线安装 wget https://github.com/ansible/ansible/archive/refs/tags/v2.16.5.tar.gz tar -zxvf v2.16.5.tar.gz cd ansible-v2.16.5 python setup.py install 主要…

jmeter使用之生成html测试报告

测试的最终结果是需要给出一份报告&#xff0c;那么在用jmeter测试时怎么生成一份报告呢&#xff0c;以下针对jmeter如何生成html报告进行简单介绍 一、首先把测试脚本写好二、利用命令生成html报告 命令&#xff1a;jmeter -n -t 【Jmx脚本位置】-l 【结果文件result.jtl存放…

2001-2022年全国各省产业链现代化水平测算(两种方法)-含原始数据、计算结果及do代码

01、数据简介 各省份的产业链现代化水平是一个综合性的评估指标&#xff0c;它涉及到多个因素&#xff0c;包括技术创新、产业升级、生产效率、产业结构优化等方面。这个指标可以用来衡量一个省份在产业链现代化进程中的发展水平和竞争力。该数据揭示了中国省份在推动产业现代…

【C++题解】 问题:1109 - 加密四位数

问题&#xff1a;1109 - 加密四位数 类型&#xff1a;基础问题、拆位求解 题目描述&#xff1a; 某军事单位用 4 位整数来传递信息&#xff0c;传递之前要求先对这个 4 位数进行加密。加密的方式是每一位都先加上 5 然后对 10 取余数&#xff0c;再将得到的新数颠倒过来。 例…

迈威通信MaxGate800系列工业边缘计算网关,算力硬核中枢的巅峰之作

随着人们对工业物联网领域的深入了解与实践&#xff0c;越来越多的企业开始寻求将计算业务从云端迁移至网络边缘处理与执行。然而&#xff0c;在实际应用中&#xff0c;开发者面临着诸多挑战。为了解决这些问题&#xff0c;迈威通信MaxGate800系列工业智能网关应运而生。 MaxG…

2024年MathorCup数学建模C题物流网络分拣中心货量预测及人员排班解题文档与程序

2024年第十四届MathorCup高校数学建模挑战赛 C题 物流网络分拣中心货量预测及人员排班 原题再现&#xff1a; 电商物流网络在订单履约中由多个环节组成&#xff0c;图1是一个简化的物流网络示意图。其中&#xff0c;分拣中心作为网络的中间环节&#xff0c;需要将包按照不同流…

分布式技术--------------ELK大规模日志实时收集分析系统

目录 一、ELK日志分析系统 1.1ELK介绍 1.2ELK各组件介绍 1.2.1ElasticSearch 1.2.2Kiabana 1.2.3Logstash 1.2.4可以添加的其它组件 1.2.4.1Filebeat filebeat 结合logstash 带来好处 1.2.4.2缓存/消息队列&#xff08;redis、kafka、RabbitMQ等&#xff09; 1.2.4.…

ChatGPT深度科研应用、数据分析及机器学习、AI绘图与高效论文撰写

2022年11月30日&#xff0c;可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT3.5&#xff0c;将人工智能的发展推向了一个新的高度。2023年4月&#xff0c;更强版本的ChatGPT4.0上线&#xff0c;文本、语音、图像等多模态交互方式使其在…

【opencv】示例-neural_network.cpp 使用机器学习模块创建并训练一个简单的多层感知机(神经网络)模型...

#include <opencv2/ml/ml.hpp> // 引入OpenCV的机器学习模块using namespace std; // 使用标准命名空间 using namespace cv; // 使用OpenCV命名空间 using namespace cv::ml; // 使用OpenCV机器学习命名空间int main() {//创建随机训练数据Mat_<float> data(100, …

部署HDFS集群(完全分布式模式、hadoop用户控制集群、hadoop-3.3.4+安装包)

目录 前置 一、上传&解压 &#xff08;一 &#xff09;上传 &#xff08;二&#xff09;解压 二、修改配置文件 &#xff08;一&#xff09;配置workers文件 &#xff08;二&#xff09;配置hadoop-env.sh文件 &#xff08;三&#xff09;配置core-site.xml文件 &…

JS sort方法踩坑

JavaScript的sort()方法在默认情况下将数组元素视为字符串进行排序&#xff0c;而不是按照数字的大小。因此&#xff0c;对于包含数字的数组&#xff0c;sort()方法会按照字符串的排序规则进行排序。 例如&#xff0c;对于[2, 11]这个数组&#xff0c;按照字符串的排序规则&…

从 iPhone 上的短信中恢复已删除的图片的可靠方法

您可能在浏览消息聊天时不小心删除了一些文本和照片。事实上&#xff0c;如果这些消息对你来说意义重大&#xff0c;那对你来说可能会很麻烦。当发生意外情况时&#xff0c;您可能不想恢复整个聊天&#xff0c;而是恢复其中的附件。 好了&#xff0c;这篇文章主要是讲如何灵活…

Kubernetes学习笔记12

k8s核心概念&#xff1a;控制器&#xff1a; 我们删除Pod是可以直接删除的&#xff0c;如果生产环境中的误操作&#xff0c;Pod同样也会被轻易地被删除掉。 所以&#xff0c;在K8s中引入另外一个概念&#xff1a;Controller&#xff08;控制器&#xff09;的概念&#xff0c;…

AI PC元年,华为的一张航海图、一艘渡轮和一张船票

今天&#xff0c;从学术研究者到产业投资者&#xff0c;无不认为大模型掀起了一场人工智能的完美风暴。 所谓“完美风暴”&#xff0c;指的是一项新技术的各个要素&#xff0c;以新的方式互相影响、彼此加强&#xff0c;组合在一起形成了摧枯拉朽般的力量。 而我们每个人&#…

【C++成长记】C++入门 | 类和对象(上) |面向过程和面向对象初步认识、类的引入、类的定义、类的访问限定符及封装

&#x1f40c;博主主页&#xff1a;&#x1f40c;​倔强的大蜗牛&#x1f40c;​ &#x1f4da;专栏分类&#xff1a;C❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 一、面向过程和面向对象初步认识 C语言是面向过程的&#xff0c;关注的是过程&#xff0c;分析出求解问题的步…

你的高佣副业不二之选,开始流量卡推广,一文看懂号卡推广

在这个信息化的时代&#xff0c;网络已成为人们生活中不可或缺的一部分。然而&#xff0c;在享受着便捷与高效的同时&#xff0c;我们也必须面对一个现实问题&#xff0c;也就是高昂的流量费用。为了解决这一困扰广大用户的痛点&#xff0c;我们今天带来了一个极具吸引力的机会…

Sonatype Nexus 服务器迁移

因为服务器的升级和调整&#xff0c;有时候会对安装 Sonatype Nexus 的服务器进行迁移到新服务器上。 从技术架构上来说&#xff0c;Sonatype Nexus 我们使用的是 AWS 的存储&#xff0c;所以我们并不需要拷贝大量的数据。 文件夹结构 在备份和恢复之前&#xff0c;我们需要…

11 Php学习:函数

PHP 内建函数Array 函数 PHP Array 函数是 PHP 核心的组成部分。无需安装即可使用这些函数。 创建 PHP 函数 当您需要在 PHP 中封装一段可重复使用的代码块时&#xff0c;可以使用函数。下面详细解释如何创建 PHP 函数并举例说明。 创建 PHP 函数的语法 PHP 函数的基…

前端CSS讲义1

什么是 CSS? CSS 指层叠样式表 样式定义如何显示 HTML 元素 样式通常存储在样式表中 把样式添加到 HTML 4.0 中&#xff0c;是为了解决内容与表现分离的问题 外部样式表可以极大提高工作效率 外部样式表通常存储在 CSS 文件中 多个样式定义可层叠为一 样式对网页中元素…

【opencv】示例-morphology2.cpp 形态学操作:膨胀、腐蚀、开运算、闭运算

element_shape MORPH_ELLIPSE; element_shape MORPH_RECT element_shape MORPH_CROSS; // 包含必要的OpenCV头文件 #include "opencv2/imgproc.hpp" // 图像处理 #include "opencv2/imgcodecs.hpp" // 图像编码解码 #include "opencv2/highgui.hpp…