人工智能|机器学习——基于机器学习的信用卡办卡意愿模型预测项目

一、背景介绍

在金融领域,了解客户的信用卡办卡意愿对于银行和金融机构至关重要。借助机器学习技术,我们可以根据客户的历史数据和行为模式预测其是否有办理信用卡的倾向。本项目通过Python中的机器学习库,构建了两个常用的分类模型:随机森林和逻辑回归,来预测客户的信用卡办卡意愿,通过使用Django框架通过构架可视化的方式分析数据。

二、数据准备

首先,我们从MySQL数据库中获取处理后的客户数据。这些数据经过预处理和特征工程,包含了客户的各种特征信息,以及是否流失的标签。

# 数据库连接和数据获取
import pandas as pd
import pymysql
from data.mapper import host, user, password, database# 连接MySQL数据库
conn = pymysql.connect(host=host,user=user,password=password,database=database
)# 从MySQL数据库中读取处理后的数据
query = "SELECT * FROM processed_customer_data"
df = pd.read_sql(query, conn)# 关闭数据库连接
conn.close()

三、模型训练与评估

3.1 随机森林模型

随机森林是一种集成学习方法,通过构建多个决策树来进行分类或回归。我们使用随机森林模型对客户的信用卡办卡意愿进行预测,并评估模型性能。

# 随机森林模型训练与评估
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix# 特征与标签分割
X = df.drop(columns=['Attrition_Flag'])
y = df['Attrition_Flag']# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=2)# 随机森林模型训练
rf_model = RandomForestClassifier()
rf_model.fit(X_train, y_train)# 模型预测
y_pred = rf_model.predict(X_test)# 模型评估
accuracy = accuracy_score(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)

3.2 逻辑回归模型

逻辑回归是一种线性模型,常用于二分类问题。我们同样使用逻辑回归模型对客户的信用卡办卡意愿进行预测,并评估模型性能。

# 逻辑回归模型训练与评估
from sklearn.linear_model import LogisticRegression# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 逻辑回归模型训练
logreg_model = LogisticRegression()
logreg_model.fit(X_train, y_train)# 模型预测
y_pred = logreg_model.predict(X_test)# 模型评估
accuracy = accuracy_score(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)

四、数据可视化

我们使用Django作为后端框架实现数据可视化,通过Pyecharts库创建多种图表,以更直观地展示数据分布和模型评估结果。

# Django视图函数中的数据可视化
from django.shortcuts import render
from pyecharts.charts import Bar, Pie, Line
from pyecharts import options as opts
from pyecharts.globals import CurrentConfig, ThemeTypefrom web.service.task_service import get_custormer_age, get_income_category, get_education_level, get_credit_limit, \get_months_inactive_12_mondef bar_chart(request):# 获取客户年龄分布数据x, y = get_custormer_age()line = (Line().add_xaxis([str(age) for age in x]).add_yaxis("Count", y).set_global_opts(title_opts=opts.TitleOpts(title="客户年龄分布图"),xaxis_opts=opts.AxisOpts(name="Age"),yaxis_opts=opts.AxisOpts(name="Count"),))# 获取客户信用卡额度分布数据x1, y1 = get_credit_limit()line1 = (Line().add_xaxis([str(age) for age in x1]).add_yaxis("Count", y1).set_global_opts(title_opts=opts.TitleOpts(title="客户信用卡额度top10分布图"),xaxis_opts=opts.AxisOpts(name="Age"),yaxis_opts=opts.AxisOpts(name="Count"),))# 获取客户非活跃月数分布数据bar1 = Bar()x1, y1 = get_months_inactive_12_mon()bar1.add_xaxis(x1)bar1.add_yaxis("客户去年非活跃月数分布", y1)# 获取客户收入范围趋势数据bar = Bar()x, y = get_income_category()bar.add_xaxis(x)bar.add_yaxis("收入范围趋势图", y)# 获取客户教育水平分布数据pie = Pie()tuple = get_education_level()pie.add("教育水平分布图", tuple)# 获取图表的JavaScript代码line_js = line.render_embed()bar_js = bar.render_embed()pie_js = pie.render_embed()bar1_js = bar1.render_embed()line1_js = line1.render_embed()return render(request, 'charts/bar_chart.html', {'line': line_js, 'bar': bar_js, 'pie': pie_js, 'line1': line1_js, 'bar1': bar1_js})

五、总结

通过本项目,我们使用了机器学习模型预测了客户的信用卡办卡意愿,并通过Django实现了数据的可视化展示。这使得银行和金融机构能够更好地理解客户行为模式,并做出相应的业务决策。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/308078.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

13 Php学习:面向对象

PHP 面向对象 面向对象(Object-Oriented,简称 OO)是一种编程思想和方法,它将程序中的数据和操作数据的方法封装在一起,形成"对象",并通过对象之间的交互和消息传递来完成程序的功能。面向对象编…

【DL水记】循环神经网络RNN的前世今生,Transformer的崛起,Mamba模型

文章目录 RNN网络简介传统RNN网络结构RNN的分类 长-短期记忆网络 (LSTM)GRU网络横空出世的Transformer网络Self-AttentionVisionTransformer Mamba模型Reference: RNN网络简介 “当人类接触新事物时,他们不会从头开始思考。就像你在阅读这篇文章时,你会根…

Day19-【Java SE进阶】网络编程

一、网络编程 1.概述 可以让设备中的程序与网络上其他设备中的程序进行数据交互(实现网络通信的)。java.net,*包下提供了网络编程的解决方案! 基本的通信架构 基本的通信架构有2种形式:CS架构(Client客户端/Server服务端)、BS架构(Browser浏览器/Server服务端)。 网络通信的…

测试开发场景问题,购物车测试场景

功能测试: a. 验证能否成功将商品添加到购物车。 b. 验证能否成功从购物车中移除商品。 c. 更新购物车中商品数量: d. 测试目标:验证能否成功更新购物车中商品的数量。 e. 验证能否成功清空购物车中的所有商品。 f. 验证能否成功结算购物车中…

视频批量高效剪辑,支持将视频文件转换为音频文件,轻松掌握视频格式

在数字化时代,视频内容日益丰富,管理和编辑这些视频变得愈发重要。然而,传统的视频剪辑软件往往操作复杂,难以满足高效批量处理的需求。现在,一款全新的视频批量剪辑神器应运而生,它支持将视频文件一键转换…

【fastapi】搭建第一个fastapi后端项目

本篇文章介绍一下fastapi后端项目的搭建。其实没有什么好说的,按照官方教程来即可:https://fastapi.tiangolo.com/zh/ 安装依赖 这也是我觉得python项目的槽点之一。所有依赖都安装在本地,一旦在别人电脑上编写项目就又要安装一遍。很扯淡。…

【CTF】ciscn_2019_n_1和pwn1_sctf_2016--栈溢出

ciscn_2019_n_1和pwn1_sctf_2016–栈溢出 ciscn_2019_n_1 解题思路 下载样本到本地 使用file和checksec查看文件内容,文件为64位ELF,只开启了NX保护,NX即No-eXecute(不可执行) 使用IDA进行反编译 在main函数中调用了f…

蓝桥杯基础18——第13届省赛真题与代码详解

目录 0.心得体会 1.题目如下 2.代码实现的思路 键值扫描 数码管窗口切换 数码管的动态扫描 继电器工作时L3闪烁,整点时刻L1灯光亮5秒 3.变量列表 定义的常量和数组 功能控制和状态变量 定时器和计数变量 4.代码参考 4.1 头文件 onewire.h ds1302.h 4…

C++高级特性:万能引用、引用折叠与完美转发(七)

1、万能引用与引用折叠 1.1、普通引用 之前的学习中学习了左值、右值、左值引用、右值引用、常引用等,但是很可惜它们都必须搭配固定的类型导致它们受到一些限制 void test1() {int a 1, b 2;int& left_ref_var a; // int&& right_ref_var a; …

[MAUI]集成富文本编辑器Editor.js至.NET MAUI Blazor项目

文章目录 获取资源从源码构建从CDN获取获取扩展插件 创建项目创建控件创建Blazor组件初始化保存销毁编写渲染逻辑 实现只读/编辑功能切换模式获取只读模式状态响应切换事件 实现明/暗主题切换项目地址 Editor.js 是一个基于 Web 的所见即所得富文本编辑器,它由CodeX…

自定义滚动条样式:前端实现跨浏览器兼容

🌟 前言 欢迎来到我的技术小宇宙!🌌 这里不仅是我记录技术点滴的后花园,也是我分享学习心得和项目经验的乐园。📚 无论你是技术小白还是资深大牛,这里总有一些内容能触动你的好奇心。🔍 &#x…

【核心完整复现】基于目标级联法的微网群多主体分布式优化调度

1 主要内容 之前发布了华电学报的复现程序《基于目标级联法的微网群多主体分布式优化调度》,具体链接为【防骗版】基于目标级联法的微网群多主体分布式优化调度,虽然对模型及结果进行了复现,但是部分模型细节和参数并没有完全实现&#xff0…

MySQL单行函数

文章目录 数值函数基本函数角度与弧度互换函数三角函数指数与对数进制间的转换 字符串函数日期和时间函数获取日期、时间日期与时间戳的转换获取月份、星期、星期数、天数等函数日期的操作函数时间和秒钟转换的函数计算日期和时间的函数日期的格式化与解析 流程控制函数加密与解…

DonkeyDocker-v1-0渗透思路

MY_BLOG https://xyaxxya.github.io/2024/04/13/DonkeyDocker-v1-0%E6%B8%97%E9%80%8F%E6%80%9D%E8%B7%AF/ date: 2024-04-13 19:15:10 tags: 内网渗透Dockerfile categories: 内网渗透vulnhub 靶机下载地址 https://www.vulnhub.com/entry/donkeydocker-1,189/ 靶机IP&a…

elasticSearch从零整合springboot项目实操

type会被弃用 ,就是说之后的elasticSearch中只会存在 索引(indices) 和 一行(document) 和字段(fields) elasticSearch 和solr的区别最大的就是 es对应的 是 json的格式 。 solr有xml和josn等…

React Hooks 全解: 常用 Hooks 及使用场景详解

React Hooks 是 React 16.8 版本引入的一项重要特性,它极大地简化和优化了函数组件的开发过程。 React 中常用的 10 个 Hooks,包括 useState、useEffect、useContext、useReducer、useCallback、useMemo、useRef、useLayoutEffect、useImperativeHandle 和 useDebugValue。这些…

ARM内核的CPU架构模型

1.引言 程序员在编码的时候,如果想有进一步的提升,我认为还是要深入底层理解程序运行原理才好。最近看了一些ARM架构的讲解,总结了如下。虽然是以ARM为原型画的图形,但是对于C和C的编程,还是有一些参考价值的。 2. AR…

云服务器租用一年、1个月优惠价格表,阿里/腾讯/京东/华为云

现在租一个服务器多少一个月?优惠价格低至3.8元1个月,租用一个月云服务器收费价格表:阿里云和腾讯云2核2G3M服务器优惠价格61元一年,折合一个月5元,京东云轻量云主机5.8元一个月,华为云服务器优惠价格3.8元…

wangeditor与deaftjs的停止维护,2024编辑器该如何做技术选型(一)

wangeditor暂停维护的声明: wangeditor是国内开发者开发的编辑器,用户也挺多,但是由于作者时间关系,暂停维护。 deaft的弃坑的声明: draft是Facebook开源的,但是也弃坑了,说明设计的时候存在很大…

为数据穿上安全的外衣——零售电商场景下的数据安全体系建设

在电子商务交易过程中,会涉及大量的个人和财务数据的传输和处理,随着电子商务的发展,数据安全风险也成为一个备受关注的问题。 而跨境电商,属于出海业务,涉及到海外不同国家的政策法规,且数据作为电商的业…