【C++庖丁解牛】哈希表/散列表的设计原理 | 哈希函数

🍁你好,我是 RO-BERRY
📗 致力于C、C++、数据结构、TCP/IP、数据库等等一系列知识
🎄感谢你的陪伴与支持 ,故事既有了开头,就要画上一个完美的句号,让我们一起加油

在这里插入图片描述


目录

  • 前言
  • 1.哈希概念
  • 2.哈希冲突
  • 3.哈希函数
  • 4.哈希冲突解决
    • 4.1闭散列
    • 4.2 开散列


前言

unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构。

1.哈希概念

哈希又称为散列,有些书上对于哈希取名为散列表,其本质就是一个存储的值和存储的位置的映射

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较顺序查找时间复杂度为O(N),平衡树中为树的高度,即O( l o g 2 N log_2 N log2N),搜索的效率取决于搜索过程中元素的比较次数。

理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素

如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。
当向该结构中:

  • 插入元素
    根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
  • 搜索元素
    对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)

例如:数据集合{1,7,6,4,5,9};
哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。

在这里插入图片描述

用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快
问题:按照上述哈希方式,向集合中插入元素44,会出现什么问题?

使用上面这个方法就可以发现44 % 10 = 4,就会出现哈希冲突/哈希碰撞,不同的值可能会映射到相同的位置,一个空间只能存储一个值,就会出现冲突

2.哈希冲突

对于两个数据元素的关键字 k i k_i ki k j k_j kj(i != j),有 k i k_i ki != k j k_j kj,但有:Hash( k i k_i ki) == Hash( k j k_j kj),即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。
把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。
发生哈希冲突该如何处理呢?

3.哈希函数

引起哈希冲突的一个原因可能是:哈希函数设计不够合理。

哈希函数设计原则:

  • 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
  • 哈希函数计算出来的地址能均匀分布在整个空间中
  • 哈希函数应该比较简单

常见哈希函数:

  1. 直接定址法–(常用)

取关键字的某个线性函数为散列地址Hash(Key)= A*Key + B
优点:简单、均匀
缺点:需要事先知道关键字的分布情况
使用场景:适合查找比较小且连续的情况

  1. 除留余数法–(常用)

设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址

  1. 平方取中法–(了解)

假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址;
再比如关键字为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址
平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况

  1. 折叠法–(了解)

折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加求和,并按散列表表长,取后几位作为散列地址。
折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况

  1. 随机数法–(了解)

选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中random为随机数函数。
通常应用于关键字长度不等时采用此法

  1. 数学分析法–(了解)

设有n个d位数,每一位可能有r种不同的符号,这r种不同的符号在各位上出现的频率不一定相同,可能在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀只有某几种符号经常出现。可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散列地址。例如:
在这里插入图片描述

假设要存储某家公司员工登记表,如果用手机号作为关键字,那么极有可能前7位都是 相同的,那么我们可以选择后面的四位作为散列地址,如果这样的抽取工作还容易出现 冲突,还可以对抽取出来的数字进行反转(如1234改成4321)、右环位移(如1234改成4123)、左环移位、前两数与后两数叠加(如1234改成12+34=46)等方法。
数字分析法通常适合处理关键字位数比较大的情况,如果事先知道关键字的分布且关键字的
若干位分布较均匀的情况

注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突


4.哈希冲突解决

解决哈希冲突两种常见的方法是:闭散列和开散列

4.1闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。那如何寻找下一个空位置呢?

哈希冲突冲突越多,效率就越低
负载因子/载荷因子 = 实际存进去的数据个数/表的大小
闭散列(开放寻址法):一般会控制在0.7左右

  1. 线性探测
    如上方中的场景,现在需要插入元素44,先通过哈希函数计算哈希地址,hashAddr为4,因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。
  • 线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

插入

  • 通过哈希函数获取待插入元素在哈希表中的位置
    i = key % 表的大小
  • 如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,
    使用线性探测找到下一个空位置,插入新元素

在这里插入图片描述

查找

  • i = key % 表的大小
    如果i为表示要查找的key就线性往后查找,直到找到或者遇到空,如果找到表结尾位置,要往头回绕()

删除

  • 采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。
    在这里插入图片描述

因此线性探测采用标记的伪删除法来删除一个元素。即在查找过程中找到或者空才结束,遇到删除会继续查找

enum State   //标记方法
{EMPTY,   //空EXIST,   //存在数据DELETE   //删除
};template<class K,class V>
struct HashData    
{pair<K, V> _data;State _state= EMPTY;   //标记状态
};template<class K,class V>
class HashTable
{
private:vector<HashData> _tables;
};

线性探测优点:实现非常简单,
线性探测缺点:一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降低。如何缓解呢?

  1. 二次探测

线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨着往后逐个去找,因此二次探测为了避免该问题,找下一个空位置的方法为: H i H_i Hi = ( H 0 H_0 H0 + i 2 i^2 i2 )% m, 或者: H i H_i Hi = ( H 0 H_0 H0 - i 2 i^2 i2 )% m。其中:i = 1,2,3…, H 0 H_0 H0是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的位置,m是表的大小。

对于上例中如果要插入44,产生冲突,使用解决后的情况为:
在这里插入图片描述

研究表明:当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置都不会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容。

4.2 开散列

  1. 开散列概念

开散列法又叫链地址法(开链法)又可以叫哈希桶,首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。

我们不直接将数据存储在空间里,我们采用链表的形式,每一个节点存储一个指针
在这里插入图片描述

我们插入一个44就会变成下面这样

在这里插入图片描述
从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/308839.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

推荐七个Python效率工具!

为了提高效率&#xff0c;我们在平时工作中常会用到一些Python的效率工具&#xff0c;Python作为比较老的编程语言&#xff0c;它可以实现日常工作的各种自动化。为了更便利的开发项目&#xff0c;这里给大家推荐几个Python的效率工具。 1、Pandas-用于数据分析 Pandas是一个强…

复杂DP算法(动态规划)

复杂DP算法 一、线性DP例题1、鸣人的影分身题目信息思路题解 2、糖果题目信息思路题解 二、区间DP例题密码脱落题目信息思路题解 三、树状DP例题生命之树题目信息思路题解 一、线性DP 例题 1、鸣人的影分身 题目信息 思路 题解 #include <bits/stdc.h> #define endl …

ZISUOJ 数据结构-线性表

题目列表&#xff1a; 问题 A: 逆序链表建立 思路&#xff1a; 可以使用头插法插入所有元素后正序遍历输出或者使用尾插法逆序遍历&#xff0c;推荐使用双链表。这是链表系列的第一个题&#xff0c;那这个题下面的参考题解的各种解法我会尽可能写全一些。 参考题解1&#xff0…

【OTA】STM32-OTA升级——持续更新

【OTA】STM32-OTA升级——持续更新 文章目录 前言一、ymodem串口协议1、Ymodem 协议2、PC3、蓝牙4、WIFI云平台 二、UDS车载协议1.UDS协议 总结 前言 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、ymodem串口协议 1、Ymodem 协议 STM32 Ymodem …

【I/O】基于事件驱动的 I/O 模型---Reactor

Reactor 模型 BIO 到 I/O 多路复用 为每个连接都创建一个线程 假设我们现在有一个服务器&#xff0c;想要对接多个客户端&#xff0c;那么最简单的方法就是服务端为每个连接都创建一个线程&#xff0c;处理完业务逻辑后&#xff0c;随着连接关闭线程也要销毁&#xff0c;但是…

每日一题(leetcode238):除自身以外数组的乘积--前缀和

不进阶是创建两个数组&#xff1a; class Solution { public:vector<int> productExceptSelf(vector<int>& nums) {int nnums.size();vector<int> left(n);vector<int> right(n);int mul1;for(int i0;i<n;i){mul*nums[i];left[i]mul;}mul1;for…

前端开发攻略---根据音频节奏实时绘制不断变化的波形图。深入剖析如何通过代码实现音频数据的可视化。

1、演示 2、代码分析 逐行解析 JavaScript 代码块&#xff1a; const audioEle document.querySelector(audio) const cvs document.querySelector(canvas) const ctx cvs.getContext(2d)这几行代码首先获取了 <audio> 和 <canvas> 元素的引用&#xff0c;并使用…

Java编程练习之抽象类与抽象方法

使用抽象类和抽象方法时&#xff0c;需要遵循以下原则&#xff1a; 1&#xff09;在抽象类中&#xff0c;可以包含抽象方法&#xff0c;也可以不包含抽象方法&#xff0c;但是包含了抽象方法的类必须被定义为抽象类&#xff1b; 2&#xff09;抽象类不能直接被实例化&#xf…

BugKu:Flask_FileUpload

Flask_FileUpload 解题思路 查看源码&#xff1a; 编写上传的文件 获得结果 小结 文件上传漏洞&#xff1a; 文件上传漏洞是指用户上传了一个可执行的脚本文件&#xff0c;并通过此脚本文件获得了执行服务器端命令的能力。这种攻击方式是最为直接和有效的&#xff0c;“文件上…

探索ERC20代币:构建您的第一个去中心化应用

下面文章中会涉及到该资源中的代码&#xff0c;如果想要完整版代码可以私信我获取&#x1f339; 文章目录 概要整体架构流程技术名词解释ERC20智能合约web3.js 技术细节ERC20合约部署创建前端界面前端与智能合约互连运行DAPP 小结 概要 在加密货币世界中&#xff0c;ERC20代币…

poi-tl的使用(通俗易懂,全面,内含动态表格实现 包会!!)

最近在做项目时候有一个关于解析Html文件&#xff0c;然后将解析的数据转化成word的需求&#xff0c;经过调研&#xff0c;使用poi-tl来实现这个需求&#xff0c;自己学习花费了一些时间&#xff0c;现在将这期间的经验总结起来&#xff0c;让大家可以快速入门 poi-tl的介绍 …

大数据产品有哪些分类?各类里知名大数据产品都有哪些?

随着互联网技术的持续进步和全球数字化转型的推进&#xff0c;我们正处于一个数据爆炸的时代。在这样的大背景下&#xff0c;大数据已经逐渐崭露头角&#xff0c;成为了推动各行各业发展的关键因素和核心资源。大数据不仅仅是指数据的规模巨大&#xff0c;更重要的是它蕴含的价…

Python八股文:基础知识Part2

1. Python中变量的保存和访问 Python中的变量实际上是一个指向对象的引用&#xff0c;每个对象都有一个唯一的标识符&#xff08;即内存地址&#xff09;。对于一些不可变对象&#xff0c;如字符串和整数&#xff0c;因为它们的值不可更改&#xff0c;所以当多个变量引用相同的…

彩虹聚合DNS管理系统源码

聚合DNS管理系统可以实现在一个网站内管理多个平台的域名解析&#xff0c;目前已支持的域名平台有&#xff1a;阿里云、腾讯云、华为云、西部数码、CloudFlare。本系统支持多用户&#xff0c;每个用户可分配不同的域名解析权限&#xff1b;支持API接口&#xff0c;支持获取域名…

建造者模式:构造复杂对象的艺术

在面向对象的设计中&#xff0c;建造者模式是一种重要的创建型设计模式&#xff0c;专门用来构建复杂的对象。它主要目的是将对象的构造代码与其表示代码分离&#xff0c;使同样的构建过程可以创建不同的表示。本文将详细介绍建造者模式的定义、实现、应用场景以及优缺点&#…

虚拟货币:数字金融时代的新工具

在数字化时代的到来之后&#xff0c;虚拟货币逐渐成为了一种广为人知的金融工具。虚拟货币是一种数字化的资产&#xff0c;它不像传统货币那样由政府或中央银行发行和监管。相反&#xff0c;虚拟货币通过密码学技术和分布式账本技术来实现去中心化的发行和交易。 虚拟货币的代…

内网通如何去除广告,内网通免广告生成器

公司使用内网通内部传输确实方便&#xff01;但是会有广告弹窗推送&#xff01;这个很烦恼&#xff01;那么如何去除广告呢&#xff01; 下载&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1CVVdWexliF3tBaFgN1W9aw?pwdhk7m 提取码&#xff1a;hk7m ID&#xff1a;…

如何进行宏观经济预测

理性预期经济学提出了理性预期的概念&#xff0c;强调政府在制定各种宏观经济政策时&#xff0c;要考虑到各行为主体预期对政策实施有效性的影响&#xff0c;积极促成公众理性预期的形成&#xff0c;从而更好地实现宏观调控的目标。政府统计要深入开展统计分析预测研究&#xf…

享元模式:优化资源利用的高效策略

在面向对象的软件开发中&#xff0c;享元模式是一种结构型设计模式&#xff0c;旨在减少内存使用&#xff0c;通过共享尽可能多的相似对象来提高应用程序的效率。本文将详细介绍享元模式的定义、实现、应用场景以及优缺点。 1. 享元模式的定义 享元模式&#xff08;Flyweigh…

免费的 ChatGPT 网站(六个)

&#x1f525;博客主页&#xff1a; 小羊失眠啦. &#x1f3a5;系列专栏&#xff1a;《C语言》 《数据结构》 《C》 《Linux》 《Cpolar》 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 文章目录 一、insCode二、讯飞星火三、豆包四、文心一言五、通义千问六、360智脑 现在智能…