深度学习图像处理基础工具——opencv 实战2 文档扫描OCR

输入一个文档,怎么进行文档扫描,输出扫描后的图片呢?

今天学习了  opencv实战项目 文档扫描OCR

问题重构:输入图像 是一个含有文档的图像——> 目标是将其转化为 规则的扫描图片

 那么怎么实现呢?

问题分解:

1 边缘检测 

2 获取轮廓

3 对获取到的轮廓进行透视变换

4 OCR

如何边缘检测?

1 把图片读入——预处理(计算坐标缩放比例以便以后使用原图的时候使用,copy原图,

2.获取灰度图——高斯滤波去除噪声,边缘检测)

如何获取需要扫描的轮廓?

1.轮廓检测 检测出所有轮廓,对检测出的所有轮廓按照面积大小分类

2遍历所有轮廓(计算轮廓近似使用到了

cv2.approxPolyDP 是一个用于多边形逼近的函数。它使用Douglas-Peucker算法来减少多边形的点数。 返回的是多边形的顶点坐标数组 详细解释opencv python中的 cv.approxPolyDP_cv::approxpolydp-CSDN博客

 当坐标数组数是4的时候(是四边形的)  把返回结果拿出来

如何进行透视变换?

使用到了四点transformer函数(见后文) 变换  输入 image 原图 和上一步返回的坐标点 输出是变换后的结果

输入的坐标点可能是乱序的,怎么进行上下左右排序?

使用了 order_points 函数  思路:四个坐标 (a,b) a+b 最大的 是右下的点 最小的是左上 b-a  z最小的是右上 最大的是左下 (假设h >w)  返回的是 排序好的rect 

回到 四点transformer函数 

怎么计算透视变换的变换矩阵M  ?需要得到原坐标点 和变换后的坐标点

如何将四边形转化为 矩形?计算上w 和下w 的值 方法 两点间距离公式 取最大,同理 取左h 右h  取最大的高和宽 得到变换后坐标位置

计算变换矩阵  

用到了cv2.getPerspectiveTransform

opencv透视变换:GetPerspectiveTransform、warpPerspective函数的使用-CSDN博客

得到了变换矩阵,怎么进行透视变换?

使用到了cv2.warpPerspective函数,warpPerspective():对图像进行透视变换。简单来说,就是有这么一副图像,它的拍摄视角不是从正面拍摄的,而是带有一定的角度,我们希望能得到从正面观察的视角。 【Python+OpenCV 图像透视变换 warpPerspective函数】-CSDN博客

返回变换后结果warped

得到的warped 是这样的

还要进行二值处理、结果保存

warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
ref = cv2.threshold(warped, 100, 255, cv2.THRESH_BINARY)[1]
cv2.imwrite('scan.jpg', ref)

最后得到的输出结果如下

代码:

# 导入工具包
import numpy as np
import argparse
import cv2# 设置参数
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required = True,help = "Path to the image to be scanned") 
args = vars(ap.parse_args())def order_points(pts):# 一共4个坐标点rect = np.zeros((4, 2), dtype = "float32")# 按顺序找到对应坐标0123分别是 左上,右上,右下,左下# 计算左上,右下s = pts.sum(axis = 1)rect[0] = pts[np.argmin(s)]rect[2] = pts[np.argmax(s)]# 计算右上和左下diff = np.diff(pts, axis = 1)rect[1] = pts[np.argmin(diff)]rect[3] = pts[np.argmax(diff)]return rectdef four_point_transform(image, pts):# 获取输入坐标点rect = order_points(pts)(tl, tr, br, bl) = rect# 计算输入的w和h值widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))maxWidth = max(int(widthA), int(widthB))heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))maxHeight = max(int(heightA), int(heightB))# 变换后对应坐标位置dst = np.array([[0, 0],[maxWidth - 1, 0],[maxWidth - 1, maxHeight - 1],[0, maxHeight - 1]], dtype = "float32")# 计算变换矩阵M = cv2.getPerspectiveTransform(rect, dst)warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))# 返回变换后结果return warpeddef resize(image, width=None, height=None, inter=cv2.INTER_AREA):dim = None(h, w) = image.shape[:2]if width is None and height is None:return imageif width is None:r = height / float(h)dim = (int(w * r), height)else:r = width / float(w)dim = (width, int(h * r))resized = cv2.resize(image, dim, interpolation=inter)return resized# 读取输入
image = cv2.imread(args["image"])
#坐标也会相同变化
ratio = image.shape[0] / 500.0
orig = image.copy()image = resize(orig, height = 500)
# 预处理
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(gray, 75, 200)# 展示预处理结果
print("STEP 1: 边缘检测")
cv2.imshow("Image", image)
cv2.imshow("Edged", edged)
cv2.waitKey(0)
cv2.destroyAllWindows()# 轮廓检测
cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[0]
cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5]# 遍历轮廓
for c in cnts:# 计算轮廓近似peri = cv2.arcLength(c, True)# C表示输入的点集# epsilon表示从原始轮廓到近似轮廓的最大距离,它是一个准确度参数# True表示封闭的approx = cv2.approxPolyDP(c, 0.02 * peri, True)# 4个点的时候就拿出来if len(approx) == 4:screenCnt = approxbreak# 展示结果
print("STEP 2: 获取轮廓")
cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)
cv2.imshow("Outline", image)
cv2.waitKey(0)
cv2.destroyAllWindows()# 透视变换
warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)# 二值处理
warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
ref = cv2.threshold(warped, 100, 255, cv2.THRESH_BINARY)[1]
cv2.imwrite('scan.jpg', ref)
# 展示结果
print("STEP 3: 变换")
cv2.imshow("Original", resize(orig, height = 650))
cv2.imshow("Scanned", resize(ref, height = 650))
cv2.imshow("warped", resize(warped, height = 650))
cv2.waitKey(0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/308919.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CSS快速入门

目录 一、CSS介绍 1、什么是CSS? ​编辑2、基本语法规范 3、引入方式 4、规范 二、CSS选择器 1、标签选择器 2、类(class)选择器 3、id选择器 4、通配符选择器 5、复合选择器 三、常用CSS 1、color 2、font-size 3、border 4…

对于缓冲区的理解

目录 1、回车和换行 2、缓冲区 1、回车和换行 回车换行\n其实是两个动作 回车是回到开始位置 换行是换到下一行 (老式键盘) 而老式键盘是从打字机来的 \r只是回车,回到开始位置 2、缓冲区 fflush(stdout)#强制刷新缓…

手写商城项目学习/复习到的知识

1.在windowr创建项目可以选择自定义/vue2/vue3,但尝试在vscode不能选择. 2.vant vant是组件库,可导入结构等.vant2用于vue2,vant3,vant\4用于vue3 vant2的使用 官网: Vant 2 - 轻量、可靠的移动端组件库 (gitee.io) 全部导入:将vant所有的组件放到了所有组件内component使…

FMix: Enhancing Mixed Sample Data Augmentation 论文阅读

1 Abstract 近年来,混合样本数据增强(Mixed Sample Data Augmentation,MSDA)受到了越来越多的关注,出现了许多成功的变体,例如MixUp和CutMix。通过研究VAE在原始数据和增强数据上学习到的函数之间的互信息…

【设计模式学习】单例模式和工厂模式

꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如需转…

算法——倍增

. - 力扣(LeetCode) 给你一棵树,树上有 n 个节点,按从 0 到 n-1 编号。树以父节点数组的形式给出,其中 parent[i] 是节点 i 的父节点。树的根节点是编号为 0 的节点。 树节点的第 k 个祖先节点是从该节点到根节点路径…

步骤大全:网站建设3个基本流程详解

一.领取一个免费域名和SSL证书,和CDN 1.打开网站链接:https://www.rainyun.com/z22_ 2.在网站主页上,您会看到一个"登陆/注册"的选项。 3.点击"登陆/注册",然后选择"微信登录"选项。 4.使用您的…

恢复MySQL!是我的条件反射,PXB开源的力量...

📢📢📢📣📣📣 哈喽!大家好,我是【IT邦德】,江湖人称jeames007,10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】!😜&am…

二极管分类及用途

二极管分类及用途 通用开关二极管 特点:电流小,工作频率高 选型依据:正向电流、正向压降、功耗,反向最大电压,反向恢复时间,封装等 类型:BAS316 ; IN4148WS 应用电路: 说明:应用…

并发编程之ThreadLocal使用及原理

ThreadLocal主要是为了解决线程安全性问题的 非线程安全举例 public class ThreadLocalDemo {// 非线程安全的private static final SimpleDateFormat sdf new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");public static Date parse(String strDate) throws ParseExc…

Python-VBA函数之旅-complex函数

目录 1、complex函数: 1-1、Python: 1-2、VBA: 2、相关文章: 个人主页:非风V非雨-CSDN博客 complex函数创建的复数对象在Python中具有广泛的应用场景,特别是在处理涉及数学计算、信号处理、物理模拟、…

数学:人工智能学习之路上的“拦路虎”及其背后的奥秘

在人工智能的浪潮席卷全球的今天,越来越多的人开始涉足这一领域,以期掌握其核心技术,为未来的科技发展贡献力量。然而,在学习的道路上,许多人却遇到了一个不小的挑战——数学。为何数学会成为学习人工智能的“拦路虎”…

Pandas相比Excel的优势是哪些?

熟悉Pandas的同学会知道,Pandas相当于Python中的Excel,都是基于二维表的进行数据处理分析,不同的是,Pandas基于代码操作数据,Excel是图形化的分析工具。 不少人会问Excel比Pandas更简单,为什么还要学习Pan…

【数学】主成分分析(PCA)的详细深度推导过程

本文基于Deep Learning (2017, MIT),推导过程补全了所涉及的知识及书中推导过程中跳跃和省略的部分。 blog 1 概述 现代数据集,如网络索引、高分辨率图像、气象学、实验测量等,通常包含高维特征,高纬度的数据可能不清晰、冗余&am…

【学习】软件测试人员使用Loadrunner进行性能测试的优势

在软件测试领域,性能测试是一项至关重要的环节,它关乎到软件系统的稳定性和用户体验。而在这其中,Loadrunner作为一款久经考验的性能测试工具,凭借其独特的优势,成为了众多企业和开发者眼中的“得力助手”。 首先&…

在 Google Cloud 上轻松部署开放大语言模型

今天,“在 Google Cloud 上部署”功能正式上线! 这是 Hugging Face Hub 上的一个新功能,让开发者可以轻松地将数千个基础模型使用 Vertex AI 或 Google Kubernetes Engine (GKE) 部署到 Google Cloud。 Model Garden (模型库) 是 Google Clou…

C语言高质量编程之assert()和const

目录 编程中常见的错误 assert() const 编程中常见的错误 在编程中我们通常会遇到三种错误形式,分别是:编译型错误,链接型错误,运行时错误。 编译型错误: 在编译阶段发生的错误,绝大多数情况是由语法错误…

Golang | Leetcode Golang题解之第18题四数之和

题目&#xff1a; 题解&#xff1a; func fourSum(nums []int, target int) (quadruplets [][]int) {sort.Ints(nums)n : len(nums)for i : 0; i < n-3 && nums[i]nums[i1]nums[i2]nums[i3] < target; i {if i > 0 && nums[i] nums[i-1] || nums[i]…

[GDC24]TheFInals的破坏系统

GDC24上TheFinals的开发工作室–EmbarkStudios带来; TheFinals把实时破坏在主流游戏上提升到了新的高度,可以说是新的标杆,达成了: 可以出现大规模的任意破坏破坏之后充分影响gameplay,可以把建筑任意炸毁之后,坍塌的建筑继续保留&物理正确(有正确的网络同步),可以废墟中继…

微服务之Consul 注册中心介绍以及搭建

一、微服务概述 1.1单体架构 单体架构&#xff08;monolithic structure&#xff09;&#xff1a;顾名思义&#xff0c;整个项目中所有功能模块都在一个工程中开发&#xff1b;项目部署时需要对所有模块一起编译、打包&#xff1b;项目的架构设计、开发模式都非常简单。 当项…