自编译支持CUDA硬解的OPENCV和FFMPEG

1 整体思路

查阅opencv的官方文档,可看到有个cudacodec扩展,用他可方便的进行编解码。唯一麻烦的是需要自行编译opencv。
同时,为了考虑后续方便,顺手编译了FFMPEG,并将其与OPENCV绑定。
在之前的博文“鲲鹏主机+昇腾Atlas 300I Pro+龙蜥8.6 全国产化主机使用NPU推理YoloV5环境安装全过程”中已经干过一次了,类似的来搞一把。

2 准备环境

2.1 安装CMake

同之前的博文,CMake官网下载后安装

./cmake-3.29.0-rc4-linux-aarch64.sh --skip-license --prefix=/usr

2.2 安装nv-codec-headers(可选)

如果不需要FFMPEG,可以无视这步。
注意他对CUDA版本和驱动版本的依赖。所以需要根据本机版本选择合适的分支。
官网传送门

以笔者本机为例,可见驱动版本为510.39.01,CUDA版本为11.6:

$ nvidia-smi 
Mon Apr 15 01:30:12 2024       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 510.39.01    Driver Version: 510.39.01    CUDA Version: 11.6     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla T4            On   | 00000000:01:00.0 Off |                    0 |
| N/A   54C    P0    28W /  70W |    303MiB / 15360MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A   1492699      C   /usr/local/bin/ollama             301MiB |
+-----------------------------------------------------------------------------+

那么选择11.1版本是合适的。同时Video Codec SDK的版本为11.1.5。

在这里插入图片描述
安装比较简单,常规的make && make install 即可。

2.3 安装Nvidia Codec SDK

官网传送门在此

注意他对CUDA版本和驱动版本的依赖,以及nv-codec-headers 对他版本的依赖。因此不能无脑下最新的,需要由此寻找合适的历史版本。
下载完的压缩包中的Read_Me.pdf中有详细的版本要求介绍,也可以根据nv-codec-headers里要求的版本型号进行处理。(应当是一致的)

在这里插入图片描述
解压后,将Interface目录下的头文件,拷贝到你的CUDA安装目录即可,默认路径为/usr/local/cuda/include。千万不要去理那些动态库,那个是配套他的测试DEMO编译用的,可以不用管。

2.4 签出opencv和opencv-contrib

统一使用最近的4.9.0的tag

export GIT_SSL_NO_VERIFY=true
git clone https://github.com/opencv/opencv.git
cd opencv
git checkout 4.9.0
cd ..
git clone https://github.com/opencv/opencv_contrib.git
git checkout 4.9.0
cd ..

3 编译安装

3.1 FFMPEG

可以直接用Video Codec SDK里面配套的FFMPEG 4.4,避免不必要的麻烦

cd Video_Codec_SDK_11.1.5/Samples/External/FFmpeg/src
unzip ffmpeg-4.4.zip
export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig:${PKG_CONFIG_PATH}
./configure --enable-shared --enable-pic --enable-cuda --enable-cuvid --enable-nvenc --enable-nvdec --enable-nonfree --enable-libnpp --extra-cflags=-I/usr/local/cuda/include/ --extra-ldflags=-L/usr/local/cuda/lib64/
make && make install

测试转码,如果没啥报错且文件可用,就表示OK了。

ffmpeg -c:v h264_cuvid -i old.mp4 -c:v h264_nvenc new.mp4

3.2 编译OPENCV

在编译之前,需要先查阅Nvidia官网获得你的cuda_arch_bin版本。以笔者本机为例。Tesla T4的数值为7.5
在这里插入图片描述

cd opencv
mkdir build
cd build
cmake -D WITH_FFMPEG=ON \
-D FFMPEG_INCLUDE_DIRS=/usr/local/include \
-D FFMPEG_LIBRARIES="/usr/local/lib/libavcodec.so;/usr/local/lib/libavformat.so;/usr/local/lib/libavutil.so;/usr/local/lib/libswscale.so;/usr/local/lib/libswresample.so" \
-D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules \
-D WITH_CUDA=ON -D WITH_CUDACODEC=ON \
-D CUDA_ARCH_BIN=7.5 \
-D BUILD_opencv_python3=yes -D BUILD_opencv_python2=no \
-D PYTHON3_EXECUTABLE=/root/miniconda3/bin/python3.11 \
-D PYTHON3_INCLUDE_DIR=/root/miniconda3/include/python3.11/ \
-D PYTHON3_LIBRARY=/root/miniconda3/lib/libpython3.11.so \
-D PYTHON3_NUMPY_INCLUDE_DIRS=/root/miniconda3/lib/python3.11/site-packages/numpy/core/include/ -D PYTHON3_PACKAGES_PATH=/root/miniconda3/lib/python3.11/site-packages \
-D PYTHON3_DEFAULT_EXECUTABLE=/root/miniconda3/bin/python3.11 \
..
make 
make install

如果需要图形化交互,还需要准备一些系统库

yum install gtk2-devel 

4 代码示例

import cv2if __name__ == '__main__':rtsp_url = 'rtsp://admin:123456@192.168.1.100/'decoder = cv2.cudacodec.createVideoReader(rtsp_url)#不设置的化默认是BGRA,为了方便后续处理,指定为BGRdecoder.set(cv2.cudacodec.COLOR_FORMAT_BGR)count = 0while True:ret,gpu_frame = decoder.nextFrame()if ret :frame = gpu_frame.download()if count == 0 :cv2.imwrite('test_img.bmp', frame)frame_queue.append(np.array(frame[:, :, ::-1]))count += 1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/310607.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

osg场景图的数据结构

1、Scene Graph场景图 场景图是一种描述三维场景的数据结构:它是一个有向无循环图。 OSG中不仅定义了场景图的数据结构,还提供了对这种图数据结构的各种访问方式,或者说是管理方法,如渲染。 2、常见节点 备注:Tranform变换的是模…

小车项目介绍

STM32智能小车基于STM32F103C8T6进行开发 该项目具有OLED,USART串口,ADC测量电压,陀螺仪,超声波测距模块,红外循迹模块,蓝牙模块,按键,电机驱动,电机,舵机,电源等功能 功能详细介绍: OLED模块 使用:OLED显示屏模块 0.96寸 IIC/SPI 选择原因:价格较低、使用方便…

如何在jmeter中把响应中的数据提取出来并引用

jmeter做接口测试过程中,经常遇到请求需要用到token的时候,我们可以把返回token的接口用后置处理器提取出来,但是在这种情况下,只能适用于当前的线程组,其他线程组无法引用到提取的token变量值,所以必须要生…

如何用好PMP项目管理知识

PMP(Project Management Professional,项目管理专业人士)是由国际项目管理协会(PMI)颁发的全球最高级别的项目管理认证,认证需要通过严格的考试,并具备相应的工作经验和教育背景。 作为一名咨询师,我们经常…

vscode和pycharm等idea编写protobuf文件格式化

想在pycharm或者goland等idea中开发protobuf文件的话,可以安装一个插件:protocol-buffers 安装之后,proto文件就会支持高亮和格式化了。 如果是vscode想要编写proto文件,可以安装另外一个插件:vscode-proto3 安装后&a…

C++修炼之路之list模拟实现--C++中的双向循环链表

目录 引言 一:STL源代码中关于list的成员变量的介绍 二:模拟实现list 1.基本结构 2.普通迭代器 const迭代器的结合 3.构造拷贝构造析构赋值重载 清空 4.inserterase头尾插入删除 5.打印不同数据类型的数据《使用模板加容器来完成》 三&#xf…

AGI趋势/创业的从业者

红杉这两年分享了好多AI文章,收录了多篇关于GenAI的观点和文章,涉及GenAI的未来、趋势、应用和挑战等话题。 比如: 2024 年的人工智能:从大爆炸到原始汤 下一个十亿开发者 生成式人工智能的第二幕 AI 的 $200B 问题 将生成式…

2024 MathorCupC题完整解题及成品论文!

C 题 物流网络分拣中心货量预测及人员排班 电商物流网络在订单履约中由多个环节组成,图 1 是一个简化的物流 网络示意图。其中,分拣中心作为网络的中间环节,需要将包裹按照不同 流向进行分拣并发往下一个场地,最终使包裹到达消费者手中。分拣中心 管理效率的提升,对整体网络的…

华为ensp中nat server 公网访问内网服务器

作者主页:点击! ENSP专栏:点击! 创作时间:2024年4月15日17点30分 NAT服务器是一种在网络边界设备上配置的服务,它允许外部网络的用户访问内部网络中的服务或主机,同时隐藏了内部网络的真实IP地…

快速探索随机树-RRT

文章目录 简介原理算法运动规划的变体和改进简介 快速探索随机树(RRT)是一种算法,旨在通过随机构建空间填充树来有效搜索非凸高维空间。该树是从搜索空间随机抽取的样本中逐步构建的,并且本质上偏向于向问题的大型未搜索区域生长。RRT 由 Steven M. LaValle 和 James J. K…

冯喜运:4.16市场洞察:中东风暴搅动汇市,现货黄金原油走势分析

【黄金消息面分析 】周一(4月15日),欧洲时段黄金价格已经从高点回落,目前交投于2351.52美元/盎司,稍早曾短暂攀至2372美元,未能重现上周收盘时触及的2431美元高位。定于周一晚些时候公布的美国3月零售销售数据也可能对美元汇率产生…

PgSQL之WITH Queries/Statement

PostgreSQL WITH 子句 在 PostgreSQL 中,WITH 子句提供了一种编写辅助语句的方法,以便在更大的查询中使用。 WITH 子句有助于将复杂的大型查询分解为更简单的表单,便于阅读。这些语句通常称为通用表表达式(Common Table Express…

1260. 二维网格迁移

1260. 二维网格迁移 原题链接:完成情况:解题思路:参考代码:错误经验吸取 原题链接: 1260. 二维网格迁移 https://leetcode.cn/problems/shift-2d-grid/description/ 完成情况: 解题思路: 这…

【yolov5小技巧(2)】---将yolov5中的特征图以热力图的方式进行可视化

文章目录 🚀🚀🚀前言一、1️⃣ 将特征图可视化的文章CFPNet二、2️⃣yolov5自带的特征图可视化工具三、3️⃣如何将特征图转换成热力图 👀🎉📜系列文章目录 【yolov5小技巧(1)】—可视化并统计目标检测中的…

IDEA 设置类注释模板作者、日期、描述等信息(推荐标准!)

idea注释模版配置 idea作为越来越多程序员使用的开发工具,平时的代码注释也非常的关键,类上注释和方法上注释每次换电脑或者新同事入职都要统一修改,找了网上好多教程都写的乱七八糟的啥都有,为方便统一就自己写一个操作方法&…

Redis入门到通关之ZSet命令

文章目录 ⛄概述⛄常见命令有⛄RedisTemplate API❄️❄️ 向集合中插入元素,并设置分数❄️❄️向集合中插入多个元素,并设置分数❄️❄️按照排名先后(从小到大)打印指定区间内的元素, -1为打印全部❄️❄️获得指定元素的分数❄️❄️返回集合内的成员个数❄️❄…

网络安全-自学笔记

一、自学网络安全学习的误区和陷阱 1.不要试图先成为一名程序员(以编程为基础的学习)再开始学习 我在之前的回答中,我都一再强调不要以编程为基础再开始学习网络安全,一般来说,学习编程不但学习周期长,而…

Springboot+Vue项目-基于Java+MySQL的免税商品优选购物商城系统(附源码+演示视频+LW)

大家好!我是程序猿老A,感谢您阅读本文,欢迎一键三连哦。 💞当前专栏:Java毕业设计 精彩专栏推荐👇🏻👇🏻👇🏻 🎀 Python毕业设计 &…

PCIe错误定义与分类

前言: PCI总线中定义两个边带信号(PERR#和SERR#)来处理总线错误。其中PERR#主要对应的是普通数据奇偶校检错误(Parity Error),而SERR#主要对应的是系统错误(System Error)。具体如下…

蓝桥杯备赛:考前注意事项

考前注意事项 1、DevCpp添加c11支持 点击 工具 - 编译选项 中添加&#xff1a; -stdc112、万能头文件 #include <bits/stdc.h>万能头文件的缺陷&#xff1a;y1 变量 在<cmath>中用过了y1变量。 #include <bits/stdc.h> using namespace std;// 错误示例 …