OpenCV轻松入门(八)——图片卷积

对图像和滤波矩阵进行逐个元素相乘再求和的操作就相当于将一个二维的函数移动到另一个二维函数的所有位置,这个操作就叫卷积

卷积需要4个嵌套循环,所以它并不快,除非我们使用很小的卷积核。这里一般使用3x3或者5x5

图像滤波

图像滤波是尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。

线性滤波是图像处理最基本的方法,它允许我们对图像进行处理,产生很多不同的效果。首先,我们需要一个二维的滤波器矩阵(卷积核)和一个要处理的二维图像。然后,对于图像的每一个像素点,计算它的邻域像素和滤波器矩阵的对应元素的乘积,然后加起来,作为该像素位置的值。这样就完成了滤波过程。

对于滤波器/卷积核,也有一定的规则要求:

  1. 滤波器的大小应该是奇数,这样它才有一个中心,例如3x3,5x5或者7x7。有中心了,也有了半径的称呼,例如5x5大小的核的半径就是2
  2. 滤波器矩阵所有的元素之和应该要等于1,这是为了保证滤波前后图像的亮度保持不变。当然了,这不是硬性要求了。
  3. 如果滤波器矩阵所有元素之和大于1,那么滤波后的图像就会比原图像更亮,反之,如果小于1,那么得到的图像就会变暗。如果和为0,图像不会变黑,但也会非常暗。
  4. 对于滤波后的结构,可能会出现负数或者大于255的数值。对这种情况,我们将他们直接截断到0和255之间即可。对于负数,也可以取绝对值。

均值滤波

将卷积核内的所有灰度值加起来,然后计算出平均值,用这个平均值填充卷积核正中间的值,这样做可以降低图像的噪声,同时也会导致图像变得模糊。

G = 1/9\begin{bmatrix} 1 & 1& 1\\ 1& 1 &1 \\ 1& 1 & 1 \end{bmatrix}

代码实现

import cv2
import numpy as np
import matplotlib.pyplot as plt# 写代码时用的jupyter,cv2.imshow总是卡死,所以用的plt方便显示图像
def imgshow(img):img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)plt.imshow(img)plt.show()dog_img = cv2.imread('/Users/guojun/Desktop/444.png',cv2.IMREAD_COLOR)
# 均值滤波: cv2.blur(img,knelsize) img-图片,卷积核大小
dst = cv2.blur(dog_img,(10,10))
imgshow(dst)

高斯模糊

采用均值滤波降噪会导致图像模糊的非常厉害,有没有一种方式既能保留像素点真实值又能降低图片噪声呢?那就是加权平均的方式. 离中心点越近权值越高,越远权值越低.

但是权重的大小设置非常麻烦,那么有没有一种方式能够自动生成呢? 这个就是需要用到高斯函数

高斯函数呈现出的特征就是中间高,两边低的钟形

高斯模糊通常被用来减少图像噪声以及降低细节层次。

 G = 1/9\begin{bmatrix} 1 & 2& 1\\ 2& 4 & 2 \\ 1& 2 & 1 \end{bmatrix}

 

代码实现

import cv2
import numpy as np
import matplotlib.pyplot as plt# 写代码时用的jupyter,cv2.imshow总是卡死,所以用的plt方便显示图像
def imgshow(img):img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)plt.imshow(img)plt.show()dog_img = cv2.imread('/Users/guojun/Desktop/444.png',cv2.IMREAD_COLOR)
# 高斯模糊   参数1:图像  参数2:卷积核大小, 参数3:标准差越大,去除高斯噪声能力越强,图像越模糊
dog_gaussianblur = cv2.GaussianBlur(dog_img,(15,15),50)
imgshow(dog_gaussianblur)

中值滤波

对邻近的像素点进行灰度排序,然后取中间值,它能有效去除图像中的椒盐噪声

操作原理:

  1. 卷积域内的像素值从小到大排序
  2. 取中间值作为卷积输出

代码实现

import cv2
import numpy as np
import matplotlib.pyplot as plt# 写代码时用的jupyter,cv2.imshow总是卡死,所以用的plt方便显示图像
def imgshow(img):img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)plt.imshow(img)plt.show()img = cv2.imread('/Users/guojun/Desktop/444.png',cv2.IMREAD_COLOR)
# 中值滤波   参数1:图像  参数2:卷积核大小,卷积核必须为单数
dst = cv2.medianBlur(img,11)
imgshow(dst)

Sobel算子

Sobel算子是像素图像边缘检测中最重要的算子之一,在机器学习、数字媒体、计算机视觉等信息科技领域起着举足轻重的作用。在技术上,它是一个离散的一阶差分算子,用来计算图像亮度函数的一阶梯度之近似值。在图像的任何一点使用此算子,将会产生该点对应的梯度矢量。

使用方式:

  1. 原图---> x 方向sobel
  2. 原图----> y 方向sobel
  3. xy合在一起

水平梯度:

Gx = \begin{bmatrix} -1 & 0& 1\\ -2& 0 & 2 \\ -1& 0 & 1 \end{bmatrix} 

垂直梯度:

Gy = \begin{bmatrix} -1 & -2& -1\\ 0& 0 & 0 \\ 1& 2 & 1 \end{bmatrix}

合成:

G=\sqrt{G{x}^{2}+G{y}^{2}}

备注:为了提高计算机效率我们通常会使用: G = |Gx|+|Gy|

代码实现

import cv2
import numpy as np
import matplotlib.pyplot as plt# 写代码时用的jupyter,cv2.imshow总是卡死,所以用的plt方便显示图像
def imgshow(img):img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)plt.imshow(img)plt.show()# Sobel算子   
img = cv2.imread('/Users/guojun/Desktop/mri.jpg',cv2.IMREAD_GRAYSCALE)# Sobel算子:x方向求导
# 参数1:图像,参数2:图像的深度,-1表示和原图相同,参数3:x方向求导的阶数 参数4:y方向求导的阶数
x_sobel = cv2.Sobel(img,cv2.cv2.CV_32F,1,0)
# 将图像转为8位int
x_sobel = cv2.convertScaleAbs(x_sobel)
# imgshow(x_sobel)# Sobel算子:y方向求导
y_sobel = cv2.Sobel(img,cv2.cv2.CV_32F,0,1)
# 将图像转为8位int
y_sobel = cv2.convertScaleAbs(y_sobel)
# imgshow(y_sobel)# 将x,y方向的内容叠加起来
dst = x_sobel + y_sobel
imgshow(dst)

Scharr算子

由于使用Sobel算子计算的时候有一些偏差, 所以opencv提供了sobel的升级版Scharr函数,计算比sobel更加精细.

 

代码实现

import cv2
import numpy as np
import matplotlib.pyplot as plt# 写代码时用的jupyter,cv2.imshow总是卡死,所以用的plt方便显示图像
def imgshow(img):img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)plt.imshow(img)plt.show()# Scharr算子   
img = cv2.imread('/Users/guojun/Desktop/mri.jpg',cv2.IMREAD_GRAYSCALE)# Scharr算子:x方向求导
# 参数1:图像,参数2:图像的深度,-1表示和原图相同,参数3:x方向求导的阶数 参数4:y方向求导的阶数
x_Scharr = cv2.Scharr(img,cv2.cv2.CV_32F,1,0)
# 将图像转为8位int
x_Scharr = cv2.convertScaleAbs(x_sobel)
# imgshow(x_sobel)# Scharr算子:y方向求导
y_Scharr = cv2.Sobel(img,cv2.cv2.CV_16S,0,1)
# 将图像转为8位int
y_Scharr = cv2.convertScaleAbs(y_sobel)
# imgshow(y_sobel)# 将x,y方向的内容叠加起来
dst = x_Scharr + y_Scharr
imgshow(dst)

拉普拉斯算子 

通过拉普拉斯变换后增强了图像中灰度突变处的对比度,使图像中小的细节部分得到增强,使图像的细节比原始图像更加清晰。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/311838.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

P9241 [蓝桥杯 2023 省 B] 飞机降落

原题链接:[蓝桥杯 2023 省 B] 飞机降落 - 洛谷 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 dfs全排列的变形题。 因为最后问飞机是否降落,并且一架飞机降落完毕时另一架飞机才能降落。所以我们设置dfs的两个变量cnt为安全…

通过adb 命令打印安装在第三方模拟器上的log

1,环境:Windows 11 ,第三方模拟器 网易的MuMu 步骤: 1,打开cmd,输入 adb connect 172.0.0.1:7555 2,在cmd,再次输入adb logcat 回车

案例分析-redis

案例需求:在7002这个slave节点执行手动故障转移,重新夺回master地位 步骤如下: 1)利用redis-cli连接7002这个节点 2)执行cluster failover命令 如图: 效果: 4.5.RedisTemplate访问分片集群 …

一个文生视频MoneyPrinterTurbo项目解析

最近抖音剪映发布了图文生成视频功能,同时百家号也有这个功能,这个可以看做是一个开源的实现,一起看看它的原理吧~ 一句话提示词 大模型生成文案 百家号生成视频效果 MoneyPrinterTurbo生成视频效果 天空为什么是蓝色的? 天空之所以呈现蓝色,是因为大气中的分子和小粒子会…

死磕GMSSL通信-java/Netty系列(二)

死磕GMSSL通信-java/Netty系列(二) 在上一篇文章中,我们探讨了如何利用C/C++实现国密通信。而本文将聚焦于Java环境下,特别是基于Netty框架,如何实现与国密系统的安全通信。为了确保新项目遵循最新的国密标准,我们将优先推荐使用GB/T 38636-2020(TLCP)协议。对于Java开…

怎么转行做产品经理?

小白转产品经理第一点要先学基础理论知识,学了理论再去实践,转行,跳槽! 学理论比较好的就是去报NPDP的系统班,考后也会有面试指导课、职场晋升课程,对小白来说非常合适了~(B站:不爱…

微软正式发布Copilot for Security

微软公司近日宣布,其备受期待的安全自动化解决方案——Copilot for Security现已全面上市,面向全球用户开放。这一创新工具的推出标志着微软在提升企业安全防护能力方面迈出了重要一步,同时也为安全专业人士提供了强大的支持。 Copilot for …

图数据库Neo4J入门——Neo4J下载安装+Cypher基本操作+《西游记》人物关系图实例

这里写目录标题 一、效果图二、环境准备三、数据库设计3.1 人物节点设计3.2 关系设计 四、操作步骤4.1 下载、安装、启动Neo4J服务4.1.1 配置Neo4J环境变量4.1.2 启动Neo4J服务器4.1.3 启动Ne04J客户端 4.2 创建节点4.3 创建关系(从已有节点创建关系)4.4…

百度智能云万源全新一代智能计算操作系统发布:引领AI新纪元,开启智能未来

随着科技的迅猛发展,人工智能(AI)逐渐渗透到我们生活的每个角落,为人类社会带来前所未有的变革。在这场科技革命的浪潮中,百度作为中国AI领域的领军企业,始终站在技术创新的前沿,不断引领行业发…

数字电路(四,五章总结)

四.组合逻辑电路设计 由波形图列真值表,之 后画出卡诺图,写出最简逻辑表达式。 卡诺图化简的时候圈住的部分如果某个字母有0又有1的话这个字母删掉,写出其他两个字母。 如下图中黄圈A有0又有1则删除A,这样黄圈代表BC;同理绿圈代…

35、链表-LRU缓存

思路: 首先要了解LRU缓存的原理,首先定下容量,每次get请求和put请求都会把当前元素放最前/后面,如果超过容量那么头部/尾部元素就被移除,所以最近最少使用的元素会被优先移除,保证热点数据持续存在。 不管放…

【Java】@RequestMapping注解在类上使用

RequestMapping 是 Spring Web 应用程序中最常被用到的注解之一。这个注解会将 HTTP 请求映射到控制器(controller类)的处理方法上。 Request Mapping 基础用法 在 Spring MVC 应用程序中,RequestDispatcher (在 Front Controller 之下) 这…

MapReduce 机理

1.hadoop 平台进程 Namenode进程: 管理者文件系统的Namespace。它维护着文件系统树(filesystem tree)以及文件树中所有的文件和文件夹的元数据(metadata)。管理这些信息的文件有两个,分别是Namespace 镜像文件(Namespace image)和操作日志文件(edit log)&#xff…

命令模式

命令模式:将一个请求封装为一个对象,从而使你可用不同的请求对客户进行参数化;对请求排队或记录请求日志,以及支持可撤销的操作。 命令模式的好处: 1、它能较容易地设计一个命令队列; 2、在需要的情况下&a…

【Phytium】飞腾D2000 UEFI/EDK2 适配 RTC(IIC SD3077)

文章目录 0. env1. 软件2. 硬件 10. 需求1. 硬件2. 软件 20. DatasheetCPURTC 30. 调试步骤1. 硬件环境搭建2. UEFI 开发环境搭建3. 修改步骤1. UEFI 中使能RTC驱动、配置RTC信息等1.1 使能RTC驱动1.2 修改RTC对应的IIC配置信息1.3 解决驱动冲突1.4 验证波形 2. 修改对应RTC驱动…

1、MYSQL系列-深入理解Mysql索引底层数据结构与算法

索引的本质 索引是帮助MySQL高效获取数据的排好序的数据结构 索引数据结构 二叉树红黑树Hash表BTree B-Tree B-Tree 叶节点具有相同的深度,叶节点的指针为空,所有索引元素不重复,节点中的数据索引从左到右递增排列 BTree(B-Tree变种) 非叶…

使用FastDDS编译IDL文件

1.安装FastDDS环境 Ubuntu22.04 1.1安装依赖的软件 sudo apt-get update //基础工具安装 sudo apt install cmake g python3-pip wget git //Asio 是一个用于网络和低级 I/O 编程的跨平台C库,它提供了一致的 异步模型。 TinyXML2是一个简单,小巧&…

Leetcode 4. 寻找两个正序数组的中位数

心路历程: 这道题暴力解很简单,一看到要求O(log(mn))的复杂度就只能是双指针,但是实测发现这道题用归并排序更快。这可能就是平均复杂度和实际复杂度的Gap吧。 二分法的思路: 要找到第 k (k>1) 小的元素,那么就取…

利用redis和fastapi实现本地与平台策略进行交互

redis在pandas一文有详细使用方法(一文教会pandas-CSDN博客),具体可视化软件有redisstudio等。它是一个由 Salvatore Sanfilippo 写的 key-value 存储系统,是跨平台的非关系型数据库。 Redis 是一个开源的使用 ANSI C 语言编写、遵守 BSD 协议、支持网络…

NTC热敏电阻采集温度-单片机通用模板

NTC热敏电阻采集温度-单片机通用模板 一、NTC热敏电阻转换温度的原理二、AT104Tem.c的实现三、AT104Tem.h的实现 一、NTC热敏电阻转换温度的原理 ①NTC热敏电阻会随着温度的升高,电阻值R逐渐降低;②硬件搭建电阻分压电路采集ADC逆推热敏电阻当前的阻值&…