开源方案复现ChatGPT流程!1.62GB显存即可体验,单机训练提速7.73倍

12fef533ecf0443b5c26353ddb7eb3a4.png

来源:潞晨科技 
本文约4000字,建议阅读8分钟
Colossal-AI 快速跟进,首个开源低成本复现 ChatGPT 完整流程。

火爆全网的 ChatGPT,仿佛开启了第四次工业革命,让微软、谷歌等全球科技巨头打得昏天黑地,引得各路玩家纷纷入局,抢占赛道。

然而由于 OpenAI 没有开源 ChatGPT,如何有效复现 ChatGPT 已成为摆在大家面前的头号难题,急需可靠的开源共建方案。

Colossal-AI 快速跟进,首个开源低成本复现 ChatGPT 完整流程。作为当下最火热的开源 AI 大模型解决方案,Colossal-AI 已收获开源社区 GitHub Star 近万颗,此次开源亮点包括:

  • 开源完整基于 PyTorch 的 ChatGPT 复现流程,涵盖全部 3 个阶段,可实现从预训练模型到 ChatGPT 的蜕变;

  • 体验最小 demo 训练流程最低仅需 1.62GB 显存,任意单张消费级 GPU 即可满足,单卡模型容量最多提升 10.3 倍

  • 相比原生 PyTorch,最高可提升单机训练速度 7.73 倍,单卡推理速度 1.42 倍,一行代码即可使用;

  • 对于微调任务,可最多提升单卡的微调模型容量 3.7 倍,同时保持高速运行,仅需一行代码;

  • 提供单卡、单机多卡、1750 亿参数等多个版本,支持从 Hugging Face 导入 OPT,GPT-3,BLOOM 等多种预训练大模型;

  • 收敛验证正在进行中,该项目也在吸引合作者共建生态

开源地址:

https://github.com/hpcaitech/ColossalAI

ChatGPT——AIGC 引发的工业革命

如果问新年伊始,最火爆的科技热点是什么?非 ChatGPT 莫属。

它仿佛无所不能的六边形战士,可以聊天、写代码、修改 bug、做表格、发论文、写作业、做翻译、甚至代替 Google 搜索引擎等……

自发布以来,ChatGPT 便已摧枯拉朽之势席卷各个行业,不仅 5 天时间便突破百万用户,月活用户突破 1 亿更是仅用时 2 个月,成为史上增速最快的消费级应用,远超如今其他知名应用,如 Twitter 5 年、Meta(Facebook)4 年半,TikTok 9 个月等,而手机普及到 1 亿用户则用了 16 年。

7e8d16abb653ab1371910c7359e26cc7.png

1 亿用户月活用户耗时

比尔・盖茨盛赞 “ChatGPT 的意义不亚于 PC 和互联网诞生”,而微软 CEO 萨蒂亚・纳德拉(Satya Nadella)更是直言 “堪比工业革命,这辈子第一次见这么大的技术浪潮” 和 “AI 正在重塑互联网”。作为向 OpenAI 投资上百亿美元的大金主,微软已火速将 ChatGPT 整合进自家的搜索引擎必应 Bing 和 Edge 浏览器,还计划加入 Teams 以及 Office 等办公套件全家桶,股价一夜市值飙涨超 800 亿美元。

55db577c3d5f6b62f72238543e7c89d3.png

微软与谷歌发布会后股价对比

而隔壁需要担心被 ChatGPT 革命掉自家搜索引擎的谷歌,虽然拉响 “红色警报”,紧急发布对标竞品 Bard,却因 Demo 首秀翻车,股价市值瞬间蒸发 1000 亿美元。

一夜之间,全球的科技巨头们仿佛都回到了自己年轻时的样子,纷纷宣布要打造自己的 ChatGPT。

但 ChatGPT 发布已有数月,市面上不仅没有预训练权重开源,连可靠的完整开源训练流程都仍是空白,更无法实现基于千亿大模型的 ChatGPT 全流程高效搭建和应用。临时上线,号称 “对标 ChatGPT” 的一众新品们,因为闭源也难辨真伪。

为什么 ChatGPT 有如此魔力?复现它又有哪些难点?

ChatGPT 技术分析

ChatGPT 的惊人效果,重要特征是在训练过程引入人类反馈强化学习(RLHF),使得模型表现更符合人类价值观。

ChatGPT 的训练流程主要分为三个阶段:

1. 从 Prompt 库中采样,收集其人工回答,利用这些数据来微调预训练大语言模型。

2. 从 Prompt 库中采样,使用大语言模型生成多个回答,人工对这些回答进行排序后,训练奖励模型(RM),来拟合人类的价值判断。

3. 基于阶段 1 的监督微调模型和阶段 2 的奖励模型,利用强化学习算法对大语言模型进一步训练。

其中阶段 3 是 RLHF 训练的核心部分,OpenAI 采用了强化学习中的近端策略优化算法(PPO),借此引入奖励信号,使得语言模型生成内容更加符合人类评判标准。

0799a492fd9bd816ea069a0c2e93c4b4.png

RLHF 的三个阶段

ChatGPT 模型的复杂性在于强化学习的引入会带来更多模型的调用。例如,使用基于 Actor-Critic(AC)结构的 PPO 算法,需要在训练时进行 Actor、Critic 两个模型的前向推理和反向传播,以及监督微调模型、奖励模型的多次前向推理。在 ChatGPT 基础的 InstructGPT 的论文中,Actor 和监督微调模型都使用了 1750 亿参数的 GPT-3 系列模型,Critic 和奖励模型则使用了 60 亿参数的 GPT-3 系列模型。

对于如此多的模型参数,想要启动原始 ChatGPT 训练流程,需要数千 GB 的显存开销,显然远超单张 GPU 的容纳能力,常见的数据并行技术也无能为力。但即使引入张量并行、流水并行对参数进行划分,也仍需至少 64 张 80GB 的 A100 作为硬件基础。并且,其中的流水并行由于 bubble 和调度复杂,效率受限,不适合 AIGC 的生成式任务。阶段 3 涉及 4 个模型的复杂强化学习训练流程,进一步给 ChatGPT 的代码复现带来了困难和挑战。

使用 Colossal-AI 低成本复现 ChatGPT

Colossal-AI 以开源方式复现了 ChatGPT 训练的基本流程,包括阶段 1 预训练,阶段 2 的奖励模型的训练,以及最为复杂的阶段 3 的强化学习训练等。

同时,Colossal-AI 通过 ZeRO,Gemini, Chunk-based 内存管理等技术,极大地降低 ChatGPT 训练的显存开销,仅需一半硬件资源即可启动 1750 亿参数模型训练(64 卡 ->32 卡),显著降低应用成本。若使用上述相同硬件资源,Colossal-AI 则能以更短时间进行训练,节省训练成本,加速产品迭代。

为了让更多开发者体验复现 ChatGPT 模型,除 1750 亿参数版本外,Colossal-AI 还提供高效的单卡、单机 4/8 卡的类 ChatGPT 版本,以降低硬件限制。

56ae254ef6e0aa3ad4f0494a7db73006.png

在单机多卡服务器上,即便使用最高端的 A100 80GB 显卡,由于 ChatGPT 的复杂性和内存碎片,PyTorch 最大仅能启动基于 GPT-L(774M)这样的小模型的 ChatGPT。用 PyTorch 原生的 DistributedDataParallel (DDP) 进行多卡并行扩展至 4 卡或 8 卡,性能提升有限。

Colossal-AI 不仅在单卡训练和推理速度上优势明显,随着并行规模扩大还可进一步提升,最高可提升单机训练速度 7.73 倍,单卡推理速度 1.42 倍,还可继续扩展至大规模并行,显著降低 ChatGPT 复现成本。

f0511afbf8e09f37a624112beca5ef25.jpeg

为了尽可能降低训练成本和上手门槛,Colossal-AI 还提供了在单张 GPU 上即可尝试的 ChatGPT 训练流程。相比于 PyTorch 在约 10 万元的 A100 80GB 上,最大仅能启动 7.8 亿参数模型,Colossal-AI 将单卡容量提升 10.3 倍至 80 亿参数。对于基于 1.2 亿参数小模型的 ChatGPT 训练,最低仅需 1.62GB 显存,任意单张消费级 GPU 即可满足。

1eab6f5b2051341aaf090c1dc6a1bfc4.jpeg

此外,Colossal-AI 也致力于降低基于预训练大模型的微调任务成本。以 ChatGPT 可选的开源基础模型 OPT 为例,相比 PyTorch,Colossal-AI 可将提升单卡微调模型容量 3.7 倍(原始计算量显著增大),同时保持高速运行。

一行代码快速上手

Colossal-AI 为 Hugging Face 社区的 GPT,OPT 和 BLOOM 等主流预训练模型,提供了开箱即用的 ChatGPT 复现代码。以 GPT 为例,仅需一行代码,指定使用 Colossal-AI 作为系统策略即可快速使用。

Python
from chatgpt.nn import GPTActor, GPTCritic, RewardModel
from chatgpt.trainer import PPOTrainer
from chatgpt.trainer.strategies import ColossalAIStrategystrategy = ColossalAIStrategy(stage=3, placement_policy='cuda')with strategy.model_init_context():actor = GPTActor().cuda()critic = GPTCritic().cuda()initial_model = deepcopy(actor).cuda()reward_model = RewardModel(deepcopy(critic.model)).cuda()trainer = PPOTrainer(strategy, actor, critic, reward_model, initial_model, ...)
trainer.fit(prompts)

使用下列命令,即可快速启动单卡、单机多卡、1750 亿版本训练,并测试各种性能指标(包括最大显存占用、吞吐率和 TFLOPS 等):

Python
# 使用单机单卡训练GPT2-S,使用最小的batch size,Colossal-AI Gemini CPU策略
torchrun --standalone --nproc_pero_node 1 benchmark_gpt_dummy.py --model s --strategy colossalai_gemini_cpu --experience_batch_size 1 --train_batch_size 1
# 使用单机4卡训练GPT2-XL,使用Colossal-AI Zero2策略
torchrun --standalone --nproc_per_node 4 benchmark_gpt_dummy.py --model xl --strategy colossalai_zero2
# 使用4机32卡训练GPT-3,使用Colossal-AI Gemini CPU策略
torchrun --nnodes 4 --nproc_per_node 8 \--rdzv_id=$JOB_ID --rdzv_backend=c10d --rdzv_endpoint=$HOST_NODE_ADDR \benchmark_gpt_dummy.py --model 175b --strategy colossalai_gemini_cpu --experience_batch_size 1 --train_batch_size 1

背后优化

核心系统 Colossal-AI

复现 ChatGPT 的背后,依赖面向大模型时代的通用深度学习系统 Colossal-AI,可基于 PyTorch 高效快速部署 AI 大模型训练和推理,降低 AI 大模型应用成本。

自开源以来,Colossal-AI 已经多次在 GitHub 热榜位列世界第一,获得 GitHub Star 超八千颗,并成功入选 SC、AAAI、PPoPP、CVPR 等国际 AI 与 HPC 顶级会议的官方教程。除上述优化外,Colossal-AI 还针对 AI 大模型趋势,提供最多样和高效的大规模多维并行分布式解决方案,此前已在 Stable Diffusion、OPT、AlphaFold 等前沿模型上展现卓越优势。

cf204f3eb254d452288517105fe2d22e.pngColossal-AI 与当今主要开源项目同期开源数据对比

Colossal-AI 由加州伯克利大学杰出教授 James Demmel 和新加坡国立大学校长青年教授尤洋领导。相关解决方案已成功在自动驾驶、云计算、零售、医药、芯片等行业知名厂商落地应用,广受好评。Colossal-AI 已成功帮助某世界 500 强企业,开发具备在线搜索引擎能力增强的类 ChatGPT 聊天机器人模型。

低成本微调的 LoRA

Colossal-AI 支持使用低秩矩阵微调(LoRA)方法进行高效微调。LoRA 方法认为大语言模型是过参数化的,其在微调中的参数改变量是·一个低秩的矩阵,可以将其分解为两个更小的的矩阵的乘积,即99eca033928727ac9ac49d077a88f108.png。在微调时,固定大模型参数,只调整低秩矩阵参数,从而显著减小训练参数量。在微调之后,进行推理部署之前,只需要将参数加回原有矩阵即可,即f320308642e1d73d8bff942928affd55.png,不增加模型的推理延迟。

de866a4b7f55e69cdea13a47fef5496e.png
LoRA 示意图,仅需训练 A、B

减少内存冗余的 ZeRO + Gemini

Colossal-AI 支持使用无冗余优化器 (ZeRO) 来优化内存使用,这种方法可以有效减少内存冗余,并且相比传统的数据并行策略,不会牺牲计算粒度和通信效率,同时可以大幅提高内存使用效率。为了进一步提升 ZeRO 的性能,Colossal-AI 引入了自动 Chunk 机制。通过将运算顺序上连续的一组参数存入同一个 Chunk 中(Chunk 是一段连续的内存空间),可以确保每个 Chunk 的大小相同,从而提高内存使用效率。使用 Chunk 方式组织内存可以保证 PCI-e 和 GPU-GPU 之间的网络带宽得到有效利用,减小通信次数,同时避免潜在的内存碎片。

e2fe168491b7e51953dc9289983614ab.jpegChunk 机制

此外,Colossal-AI 的异构内存空间管理器 Gemini 支持将优化器状态从 GPU 卸载到 CPU ,以节省 GPU 内存占用。可以同时利用 GPU 内存、CPU 内存(由 CPU DRAM 或 NVMe SSD 内存组成)来突破单 GPU 内存墙的限制,进一步扩展了可训练模型规模。

d5afaa9f85e27b81b0efa26f78bc2fdc.png通过 ZeRO + Gemini 提升硬件的模型容量

开放协作

尽管此次开源包含了复现 ChatGPT 的完整算法流程和必要软件系统,但对于像 ChatGPT 这样的超大 AI 大模型,想要实际落地应用,还需要数据、算力至少 2 方面的努力。毕竟训练一个 1750 亿参数的 GPT-3 就需要数百万美元算力。因此,长期以来预训练大模型都由少数大型私营科技公司垄断。

好在开源社区已成功进行了新的尝试。例如,完全开放代码、数据集、权重的 1760 亿参数的 BLOOM 模型,共有来自全球 60 个国家、超过 250 个机构,以及超过 1000 名研究人员参与其中,其中包括以个人名义参加的 Meta、谷歌等大厂员工。而前段时间大火的开源图文生成模型 Stable Diffusion,也是由 Stability AI、EleutherAI 和 LAION 等组织共同完成的。

借鉴上述成功模式,该项目也在吸引更多的合作者:无论是个人开发者,还是算力、数据、模型等可能合作方,都有机会参与其中,大显身手,以复现 ChatGPT 为起点,拥抱大模型时代!

可通过以下方式联系或参与:

1. 在 GitHub 发布 issue 或提交 PR

2. 加入 Colossal-AI 用户微信或 Slack 群交流

3. 点击阅读原文填写合作提案

4. 发送合作提案到邮箱 contact@hpcaitech.com

开源地址:

https://github.com/hpcaitech/ColossalAI

参考链接:

https://www.hpc-ai.tech/blog/colossal-ai-chatgpt

编辑:于腾凯

校对:程安乐

48c091b47ceb4907b196c51954ea7880.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/3121.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

马云回国,首谈ChatGPT

马云今天回国了,这是一个备受关注的消息。 作为中国最具代表性的企业家之一,马云在过去的二十多年里,带领阿里巴巴从一个小小的创业公司,发展成为全球最大的电商平台之一,同时也推动了中国互联网行业的发展。 他的回…

ChatGPT使用技巧—如何辅导孩子作业,提升学习成绩?

一、辅导作业难题(辅导作业的家长一定要看一看这篇文章!!!) 对于大部分家庭来说,辅导孩子作业是一件很费时间、费精力的事情,有时候没控制住可能还会大发雷霆,甚至会吼、骂、打自己的…

ChatGPT来了,英语不能丢,但我不想上班

文 / 谷雨(微信公众号:王不留) 好久没写文,可能大伙已把我忘了。春节之后,状态一直不太好。我在2月1号时从老家直接来到了深圳出差,而后以996的工作状态疲于应付工作中的各种问题。 终于这周末休息了两天&a…

BERT学习与实践:为紧追潮流ChatGPT做好技术准备

★★★ 本文源自AlStudio社区精品项目,【点击此处】查看更多精品内容 >>> BERT学习与实践:为紧追潮流ChatGPT做好技术准备! 本项目的主角是:ChatGPT的技术底座,NLP自然语言机器学习的开山之作,ER…

学术ChatGPT——利用ChatGPT助力日常工作与学习

ChatGPT的出现给各个行业带来了前所未有的冲击,其中也包括学术研究领域。在学术研究领域,有着「数学天才」之称陶哲轩之前就曾表示,他已经将ChatGPT纳入了自己的工作流程。 那么做为一名普通的工作或者学习的人员,如何使用ChatGPT…

使用ChatGPT辅助学习——让你的学生主动找到学习的方法!

ChatGPT就像一座巨大的金矿,能挖到多少金子,完全取决于你的思维、认知和行动力。 当大部分人还在观望,或者拿着ChatGPT随便玩一玩的时候。 有的人,已经快速把它切入垂直领域,开始深耕。 如果你的孩子或者学生正在上初…

ChatGPT提示词学习手册

前言 欢迎来到《ChatGPT提示的艺术:制作清晰和有效提示的指南》!在这本全面的指南中,您将学习到关于制作清晰和有效的ChatGPT提示的一切知识,以推动引人入胜和信息丰富的对话。 无论您是初学者还是有经验的ChatGPT用户&#xf…

ChatGPT神奇应用:制定学习计划

ChatGPT云炬学长 公众号:云炬网络 正文共 391 字,阅读大约需要 2 分钟 为了更好地完成学习任务,制定一个详细完善的学习计划显得尤为重要。今天就教大家如何通过使用ChatGPT,轻松地制定出一份高效率、具有可操作性、可量化的学习…

ChatGPT的初步学习和认识

文章目录 (一) 使用ChatGPT的体验(二) ChatGPT的优缺点ChatGPT的优势包括:ChatGPT的缺点: (三) ChatGPT的功能 (一) 使用ChatGPT的体验 1)使用chatGPT进行学习,知识点整理 2) 使用chatgpt进行编程 3)请教…

正确使用chatgpt学习英语

以下照片均为截图搬运。

如何运用ChatGPT来学习英文?

利用ChatGPT来学习英文是一种有趣且有效的方式。以下是几种方法,可以帮助您利用ChatGPT来提升英语学习的效果: 对话交流:与ChatGPT进行对话是锻炼口语和写作能力的好方法。您可以模拟真实对话,提出问题并回答ChatGPT的回复。这样…

小i机器人悄无声息美股IPO:募资3876万美元 蹭ChatGPT热度

雷递网 雷建平 3月10日 小i机器人(股票代码为:“AIXI”)昨日在美国纳斯达克上市,发行价为6.8美元,位于发行区间6.8到8.8美元的最低端位置。 小i机器人此次发行570万股,募资总额为3876万美元,较最…

ChatGPT潮落 资金逃离AI概念股

ChatGPT访问量首次出现负增长,寒气传导到证券市场。 上半年经历暴涨的一众AI概念股偃旗息鼓,蓝色光标、三六零、昆仑万维等知名个股均较高点跌超30%。微软、英伟达也未能幸免,同样有不同程度回调。 回顾这波过山车般的市场表现,…

chatgpt赋能python:Python如何获取股票数据——详细介绍

Python如何获取股票数据——详细介绍 Python作为一款专业的编程语言,其应用领域十分广泛,其中之一就是股票数据的获取。本文将详细介绍Python如何获取股票数据的方法,帮助大家快速获取所需的股票信息。 一、使用pandas-datareader获取股票数…

如何上传数据让chatGPT帮你做商业分析

如何上传数据让chatGPT帮你做商业分析 其实,如果能让ChatGPT分析外部数据,能做的事情真的很多。 一、验证思路,先做人简单的分析。 二、如何让ChatGPT识别外部数据。 三、选代反馈。 四、千万小心!ChatGPT城府很深! 最终方案&#xff1a…

火爆全球的ChatGPT到底能够帮助大学生什么??

近期,一款人工智能不断活跃在大众视野,它可以根据用户的问题进行实时分析答疑,而且质量不比该方面的专家差。上线2个月,月活突破1个亿,那ChatGPT到底是什么?那国内有没有类似的程序可以参考借鉴。朋友给我推荐了款类似…

我让 ChatGPT 做了个自我介绍

最近 ChatGPT 真的火得一塌糊涂,不仅仅是在 AI 圈、科技圈引起震动,还让我们这些圈外人士也对 ChatGPT 兴致勃勃。之前我试着自己写文章介绍过 ChatGPT,感觉并不够专业,于是我便萌生了一个想法:不如让 ChatGPT 来个自我…

ChatGPT能做的49件事情

把OpenAI官方的49个Examples整理成了“ChatGPT 能做的49件事”,看着还不错https://platform.openai.com/examples

ChatGPT能帮设计师做什么?

ChatGPT可不只是个“几句话生成器”哦! 作为一个AI模型,它可以帮助设计师提供多方面的支持。 比如,它可以给你提供创意灵感、颜色搭配建议、字体选择以及布局排版等指导,甚至还可以自动化生成网站、文章和图像等... 接下来&…

ChatGPT是什么?能用它来干什么

ChatGPT 是一个原型人工智能聊天机器人,专注于可用性和对话。对着ChatGPT提问,有问必答,甚至可以创作,给的上下文越充分,生成的内容越符合要求。 ChatGPT能够理解和生成自然语言,不仅可以回答基础问题&…