2024五一杯数学建模A题思路分析

文章目录

  • 1 赛题思路
  • 2 比赛日期和时间
  • 3 组织机构
  • 4 建模常见问题类型
    • 4.1 分类问题
    • 4.2 优化问题
    • 4.3 预测问题
    • 4.4 评价问题
  • 5 建模资料

1 赛题思路

(赛题出来以后第一时间在CSDN分享)
https://blog.csdn.net/dc_sinor?type=blog

2 比赛日期和时间

报名截止时间:2024年4月30日(周二)24:00

比赛开始时间:2024年5月1日(周三)10:00

比赛结束时间:2024年5月4日(周六)12:00

3 组织机构

数学建模竞赛是一项模拟面对实际问题寻求解决方案的活动,是一次近似于“真刀真枪”的创新探索性实践训练。在丰富并活跃学生课外生活活动的同时,数学建模竞赛有助于训练学生的想象力、洞察力和创造力,有助于培养学生团结合作组织能力和查阅文献、收集资料、文字表达能力,有助于受到科学研究的基本训练。

五一数学建模竞赛是大学生自发组织的全国性数学建模竞赛,2023 年第二十届五一数学建模竞赛吸引了近 5800 支队伍、1.64 万多名学生参赛。五一数学建模竞赛的题目主要由工程技术、经济管理、社会生活等领域中的实际问题抽象加工而成,没有事先设定的标准答案,留有充分余地供参赛者发挥聪明才智。历届赛题大多数都来自企事业的实际问题或科研项目。这些问题的解决带来了良好的经济效益和社会效益。

4 建模常见问题类型

趁现在赛题还没更新,A君给大家汇总一下建模经常使用到的数学模型,题目八九不离十基本属于一下四种问题,对应的解法A君也相应给出

分别为:

  • 分类模型
  • 优化模型
  • 预测模型
  • 评价模型

4.1 分类问题

判别分析:

又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。

其基本原理是按照一定的判别准则,建立一个或多个判别函数;用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标;据此即可确定某一样本属于何类。当得到一个新的样品数据,要确定该样品属于已知类型中哪一类,这类问题属于判别分析问题。

聚类分析:

聚类分析或聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集,这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。

聚类分析本身不是某一种特定的算法,而是一个大体上的需要解决的任务。它可以通过不同的算法来实现,这些算法在理解集群的构成以及如何有效地找到它们等方面有很大的不同。

神经网络分类:

BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

4.2 优化问题

线性规划:

研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。建模方法:列出约束条件及目标函数;画出约束条件所表示的可行域;在可行域内求目标函数的最优解及最优值。

非线性规划:

非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是 线性函数的情形则属于线性规划。

整数规划:

规划中的变量(全部或部分)限制为整数,称为整数规划。若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。一类要求问题的解中的全部或一部分变量为整数的数学规划。从约束条件的构成又可细分为线性,二次和非线性的整数规划。

动态规划:

包括背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等。

动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

多目标规划:

多目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。任何多目标规划问题,都由两个基本部分组成:

(1)两个以上的目标函数;
(2)若干个约束条件。有n个决策变量,k个目标函数, m个约束方程,则:

Z=F(X)是k维函数向量,Φ(X)是m维函数向量;G是m维常数向量;

4.3 预测问题

回归拟合预测

拟合预测是建立一个模型去逼近实际数据序列的过程,适用于发展性的体系。建立模型时,通常都要指定一个有明确意义的时间原点和时间单位。而且,当t趋向于无穷大时,模型应当仍然有意义。将拟合预测单独作为一类体系研究,其意义在于强调其唯“象”性。一个预测模型的建立,要尽可能符合实际体系,这是拟合的原则。拟合的程度可以用最小二乘方、最大拟然性、最小绝对偏差来衡量。

灰色预测

灰色预测是就灰色系统所做的预测。是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

马尔科夫预测:是一种可以用来进行组织的内部人力资源供给预测的方法.它的基本 思想是找出过去人事变动的 规律,以此来推测未来的人事变动趋势.转换矩阵实际上是转换概率矩阵,描述的是组织中员工流入,流出和内部流动的整体形式,可以作为预测内部劳动力供给的基础.

BP神经网络预测

BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。它是一种应用较为广泛的神经网络模型,多用于函数逼近、模型识别分类、数据压缩和时间序列预测等。

支持向量机法

支持向量机(SVM)也称为支持向量网络[1],是使用分类与回归分析来分析数据的监督学习模型及其相关的学习算法。在给定一组训练样本后,每个训练样本被标记为属于两个类别中的一个或另一个。支持向量机(SVM)的训练算法会创建一个将新的样本分配给两个类别之一的模型,使其成为非概率二元线性分类器(尽管在概率分类设置中,存在像普拉托校正这样的方法使用支持向量机)。支持向量机模型将样本表示为在空间中的映射的点,这样具有单一类别的样本能尽可能明显的间隔分开出来。所有这样新的样本映射到同一空间,就可以基于它们落在间隔的哪一侧来预测属于哪一类别。

4.4 评价问题

层次分析法

是指将一个复杂的 多目标决策问题 作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

优劣解距离法

又称理想解法,是一种有效的多指标评价方法。这种方法通过构造评价问题的正理想解和负理想解,即各指标的最大值和最小值,通过计算每个方案到理想方案的相对贴近度,即靠近正理想解和远离负理想解的程度,来对方案进行排序,从而选出最优方案。

模糊综合评价法

是一种基于模糊数学的综合评标方法。 该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。 它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。

灰色关联分析法(灰色综合评价法)

对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。

典型相关分析法:是对互协方差矩阵的一种理解,是利用综合变量对之间的相关关系来反映两组指标之间的整体相关性的多元统计分析方法。它的基本原理是:为了从总体上把握两组指标之间的相关关系,分别在两组变量中提取有代表性的两个综合变量U1和V1(分别为两个变量组中各变量的线性组合),利用这两个综合变量之间的相关关系来反映两组指标之间的整体相关性。

主成分分析法(降维)

是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

因子分析法(降维)

因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。

BP神经网络综合评价法

是一种按误差逆传播算法训练的多层前馈网络,是应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

5 建模资料

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/312202.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

模板的进阶

目录 非类型模板参数 C11的静态数组容器-array 按需实例化 模板的特化 函数模板特化 类模板特化 全特化与偏特化 模板的分离编译 总结 非类型模板参数 基本概念:模板参数类型分为类类型模板参数和非类类型模板参数 类类型模板参数:跟在class…

Linux硬件管理

文章目录 Linux硬件管理1.查看磁盘空间 df -h2.查看文件的磁盘占用空间 du -ah3.查看系统内存占用情况 htop Linux硬件管理 1.查看磁盘空间 df -h 语法 df [选项][参数]选项 -a或–all&#xff1a;包含全部的文件系统&#xff1b; –block-size<区块大小>&#xff1a;…

项目风采展示【车酷-保时捷第二屏】

桌面功能介绍&#xff1a; 1&#xff1a;支持本地app桌面展示 2&#xff1a;支持本地音乐控制

Spring Boot | Spring Boot 整合 “Servlet三大组件“ ( Servlet / Filter / Listene )

目录: Spring Boot 整合 "Servlet三大组件" &#xff1a;1. 使用 "组件注册" 的方式 "整合Servlet三大组件" ( 实际操作为 : 创建自定义的"三大组件"对象 结合刚创建"的自定义组件对象"来 将 XxxRegistrationBean对象 通过…

Flink CDC 的 debezium-json 格式和 debezium 原生格式是一回事吗?

博主历时三年精心创作的《大数据平台架构与原型实现&#xff1a;数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行&#xff0c;点击《重磅推荐&#xff1a;建大数据平台太难了&#xff01;给我发个工程原型吧&#xff01;》了解图书详情&#xff0c;…

计算机网络 Cisco远程Telnet访问交换机和Console终端连接交换机

一、实验要求和内容 1、配置交换机进入特权模式密文密码为“abcd两位班内学号”&#xff0c;远程登陆密码为“123456” 2、验证PC0通过远程登陆到交换机上&#xff0c;看是否可以进去特权模式 二、实验步骤 1、将一台还没配置的新交换机&#xff0c;利用console线连接设备的…

深度解析SPARK的基本概念

关联阅读博客文章&#xff1a; 深入理解MapReduce&#xff1a;从Map到Reduce的工作原理解析 引言&#xff1a; 在当今大数据时代&#xff0c;数据处理和分析成为了企业发展的重要驱动力。Apache Spark作为一个快速、通用的大数据处理引擎&#xff0c;受到了广泛的关注和应用。…

IAR 使用笔记(IAR BIN大小为0异常解决)

烧写 由于芯片的内部SPI FLASH的0级BOOT 程序起到到开启JTAG SW 仿真功能&#xff0c;一旦内部SPI FLASH存储的BL0启动代码被损坏&#xff0c;芯片的JTAG 将不能被连接。所以对BL0的烧写需要谨慎&#xff0c;烧写BL0过程保证芯片不断电。 如果烧写了多备份的启动代码&#xff…

每日两题2

不同路径 class Solution { public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m1, vector<int>(n1,0));//创建dp表dp[0][1] 1;//初始化//填表for(int i 1; i < m; i){for(int j 1; j < n; j){dp[i][j] dp[i-1][j] dp[i][j-1];}}ret…

Linux 内核学习(1) --- 时钟子系统

标题 时钟系统说明时钟树Clock Provider时钟通用数据结构clock_device 的注册clock_provider DTS配置和注册clock consumer时钟系统总结 时钟系统说明 时钟就是 SoC 中的脉搏&#xff0c;由它来控制各个部件按各自的节奏跳动。比如&#xff0c;CPU主频设置&#xff0c;串口的波…

潮玩宇宙小程序定制大逃杀游戏APP开发H5游戏

游戏名称&#xff1a;潮玩宇宙大逃杀 游戏类型&#xff1a;休闲竞技类小游戏 游戏目标&#xff1a;玩家通过选择房间躲避杀手&#xff0c;生存下来并瓜分被杀房间的元宝。 核心功能 房间选择&#xff1a;玩家进入游戏后&#xff0c;可以选择一间房间躲避杀手。杀手行动&…

IDEA Warnings:SQL dialect is not configured.

springboot项目XxxMapper.xml文件打开后显示warnings&#xff1a;SQL dialect is not configured......&#xff08;翻译&#xff1a;未配置SQL语言。&#xff09; 大概意思是没有在IDEA中配置当前sql是MySQl、Oracle还是MariaDB等语言。 配置一下就好&#xff1a; 完了&#…

APIGateway的认证

APIGateway的支持的认证如下&#xff1a; 我们从表格中可以看到&#xff0c;HTTP API 不支持资源策略的功能&#xff0c;另外是通过JWT的方式集成Cognito的。 对于REST API则是没有显示说明支持JWT认证&#xff0c;这个我们可以通过Lambda 自定义的方式来实现。 所以按照这个…

本地搭建属于你自己的AI搜索引擎 支持多家AI模型

FreeAskInternet 是一个完全免费、私有且本地运行的搜索聚合器&#xff0c;并使用 MULTI LLM 生成答案&#xff0c;无需 GPU。用户可以提出问题&#xff0c;系统将进行多引擎搜索&#xff0c;并将搜索结果合并到LLM中&#xff0c;并根据搜索结果生成答案。全部免费使用。 项目…

Java springboot使用EasyExcel读Excel文件,映射不到属性值,对象属性值都是null

如果你的类上有这个注解&#xff0c;去掉火或注释掉就可以了 Accessors(chain true)解决方法

解决EasyPoi导入Excel获取不到第一列的问题

文章目录 1. 复现错误2. 分析错误2.1 导入的代码2.2 DictExcel实体类2.2 表头和标题3. 解决问题1. 复现错误 使用EasyPoi导入数据时,Excel表格如下图: 但在导入时,出现如下错误: name为英文名称,在第一列,Excel表格有值,但导入的代码中为null,就很奇怪? 2. 分析错误 …

【数据结构1-基本概念和术语】

这里写自定义目录标题 0.数据&#xff0c;数据元素&#xff0c;数据项&#xff0c;数据对项&#xff0c;数据结构&#xff0c;逻辑结构&#xff0c;存储结构1.结构1.1逻辑结构1.2存储结构1.2.1 顺序结构1.2.2链式结构 1.3数据结构1.3.1基本数据类型1.3.2抽象数据类型1.3.2.1一个…

【系统分析师】系统安全分析与设计

文章目录 1、安全基础技术1.1 密码相关1.1.1对称加密1.1.2非对称加密1.1.3信息摘要1.1.4数字签名1.1.5数字信封 1.2 PKI公钥体系 2、信息系统安全2.1 保障层次2.2 网络安全2.2.1WIFI2.2.2 网络威胁与攻击2.2.3 安全保护等级 2.3计算机病毒与木马2.4安全防范体系 1、安全基础技术…

探索数据结构:BF与KMP的灵活应用

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ &#x1f388;&#x1f388;养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; 所属专栏&#xff1a;数据结构与算法 贝蒂的主页&#xff1a;Betty’s blog 1. 什么是字符串匹配算法 字符串匹配是计算机科学中的一个基础概念&…

python创建word文档并向word中写数据

一、docx库的安装方法 python创建word文档需要用到docx库&#xff0c;安装命令如下&#xff1a; pip install python-docx 注意&#xff0c;安装的是python-docx。 二、使用方法 使用方法有很多&#xff0c;这里只介绍创建文档并向文档中写入数据。 import docxmydocdocx.Do…