AI应用实战2:使用scikit-learn进行回归任务实战

代码仓库在gitlab,本博客对应于02文件夹。

1.问题分析

在此篇博客中我们来对回归任务进行实战演练,背景是直播带货平台的业绩预测。第一步,就是分析问题。

  • 问题痛点: 在直播带货平台上,由于市场环境多变、用户行为复杂以及各种营销策略的影响,预测单次直播活动的实际成交量对于商家和平台来说是一项具有挑战性的任务。痛点在于无法准确预估每次直播带货活动将会产生的销售业绩,这直接影响到库存管理、供应链协调、促销策略制定以及主播资源调配等多个环节的效率和效果。

  • 现状: 当前,在没有有效预测模型的情况下,平台主要依赖过往经验或者简单的趋势分析来进行粗略的销量估算,而这些方法往往忽视了诸多影响因素(例如转发量、流量指数、商品类型热度等)对成交量的潜在贡献,导致预测准确性不高,可能会造成库存积压或供不应求的问题,增加经营风险。

  • 目标: 目标是建立一个基于机器学习的回归预测模型,该模型能够根据给定的直播前关键指标(如转发量、流量指数和商品类型热度等),准确预测即将进行的直播带货活动可能达成的成交量。通过精确预测,可以指导商家合理安排库存,优化资源配置,并提高整体运营效率与效益。

  • 解决问题的方法: 针对这一需求,可使用监督学习中的回归分析技术来解决。首先,收集大量历史直播活动的数据,包括但不限于转发量、流量指数、商品类型热度以及对应的实际成交量。然后,利用这些数据训练一个回归模型,如线性回归、决策树回归、随机森林回归、支持向量机回归或神经网络回归等。模型会学习不同变量之间的关系并据此对未来直播的成交量做出预测。

  • 可能使用的AI技术:
    回归分析:这是最适合本场景的技术,因为我们需要的是一个连续数值(即成交量)作为输出而非离散类别标签。

  • 具体步骤:
    数据准备:收集历史直播带货数据集,包括自变量(转发量、流量指数、商品类型编码等)、因变量(成交量)。
    特征工程:处理商品类型,将其转换为有意义的数值特征(如one-hot编码、嵌入式表示等)。
    模型训练:选择合适的回归算法训练模型,调整模型参数以优化性能。
    验证与评估:通过交叉验证等方式评估模型的预测性能,如均方误差(MSE)、R²分数等。
    预测应用:将训练好的模型应用于新直播活动的各项指标,得出预测成交量。

2.数据准备

由于没有数据来源,所以我是利用AI生成的数据,用来演示回归任务实战。数据集划分为80%训练集,20%测试集。

  • 数据集:
    为代码仓库(地址在博客顶部)文件夹中的dataset.csv文件。

在这里插入图片描述

3.代码实现

# coding:gbk
####  数据集划分
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score# 加载CSV数据集
data = pd.read_csv('dataset.csv',encoding='gbk')# 假设'转发量'、'流量指数'、'品类热度'是特征列,'成交量'是目标列
features = data[['转发量', '流量指数', '品类热度']]
target = data['成交量']# 将数据集按比例划分为训练集和测试集,比如80%的数据用于训练,20%用于测试
# 这里random_state参数是为了保证每次划分结果的一致性,不设置的话每次运行会产生不同的划分结果
X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42)# 训练模型(这里以线性回归为例)
model = LinearRegression()
model.fit(X_train, y_train)# 预测
y_pred_train = model.predict(X_train)  # 对训练集进行预测
y_pred_test = model.predict(X_test)  # 对测试集进行预测# 评估模型
mse_train = mean_squared_error(y_train, y_pred_train)  # 计算训练集上的均方误差
r2_train = r2_score(y_train, y_pred_train)  # 计算训练集上的决定系数R²mse_test = mean_squared_error(y_test, y_pred_test)  # 计算测试集上的均方误差
r2_test = r2_score(y_test, y_pred_test)  # 计算测试集上的决定系数R²print(f"训练集均方误差 (MSE): {mse_train}")
print(f"训练集决定系数 R2: {r2_train}")
print("\n")
print(f"测试集均方误差 (MSE): {mse_test}")
print(f"测试集决定系数 R2: {r2_test}")

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/312392.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SSH协议的优缺点

SSH(Secure Shell)是一种用于在计算机网络上进行安全远程访问和执行命令的协议。提供加密通信通道,防止敏感信息在传输过程中被窃听或篡改。SSH还支持文件传输和端口转发等功能,使其成为广泛使用的安全远程管理工具。 1. 安全远程…

SQLite的PRAGMA 声明(二十三)

返回:SQLite—系列文章目录 上一篇:SQLite从出生到现在(发布历史记录)(二十二) 下一篇:用于 SQLite 的异步 I/O 模块(二十四) PRAGMA 语句是特定于 SQLite 的 SQL 扩…

Linux知识点(3)

文章目录 11. 进程间通信11.1 管道11.1.0 |11.1.1 匿名管道11.1.2 命名管道11.1.3 用匿名管道形成进程池 11.2 system V共享内存11.2.1 system V函数11.2.2 system 命令 11.3 system V消息队列11.4 system V 信号量 12. 进程信号12.1 前台进程和后台进程12.1.1 jobs12.1.2 fg &…

支持向量机模型pytorch

通过5个条件判定一件事情是否会发生,5个条件对这件事情是否发生的影响力不同,计算每个条件对这件事情发生的影响力多大,写一个支持向量机模型pytorch程序,最后打印5个条件分别的影响力。 示例一 支持向量机(SVM)是一种…

Oracle 正则,开窗,行列转换

1.开窗函数 基本上在查询结果上添加窗口列 1.1 聚合函数开窗 基本格式: ..... 函数() over([partition by 分组列,...][order by 排序列 desc|asc][定位框架]) 1,partition by 字段 相当于group by 字段 起到分组作用2,order by 字段 即根据某个字段…

解决npm install安装node-sass包容易失败的问题

具体问题如下: npm ERR! code ERESOLVE npm ERR! ERESOLVE unable to resolve dependency tree npm ERR! npm ERR! While resolving: XXX3.4.0 npm ERR! Found: webpack5.31.2 npm ERR! node_modules/webpack npm ERR! peer webpack”^4.0.0 || ^5.0.0″ from html-…

安全大脑与盲人摸象

21世纪是数字科技和数字经济爆发的时代,互联网正从网状结构向类脑模型进行进化,出现了结构和覆盖范围庞大,能够适应不同技术环境、经济场景,跨地域、跨行业的类脑复杂巨型系统。如腾讯、Facebook等社交网络具备的神经网络特征&…

WIN7用上最新版Chrome

1.下载WIN10最新版Chrome的离线安装包 谷歌浏览器 Chrome 最新版离线安装包下载地址 v123.0.6312.123 - 每日自动更新 | 异次元软件 文件名称:123.0.6312.123_chrome_installer.exe。 123.0.6312.123_chrome_installer.exe 文件右键解压缩得到 chrome.7z&#x…

【Linux】Linux信号

目录 信号的概念 生活中的信号 Linux中的信号 kill命令 kill 命令的使用 常见的信号 命令行代码示例 注意事项 信号的处理方式 产生信号 信号的捕捉 信号捕捉示意图 内核如何实现信号捕捉 信号的捕捉与处理 小结 阻塞信号 信号在内核中的表示图 信号集操作函数…

部署wordpress

查看别名type ll ll 是 ls -l --colorauto 的别名 设置别名alias alias ymyum install -y 使用别名ym nginx 取消别名unalias ym 基于LNMP做一个wordpress nginx mysql 5.7 PHP 7.4 1、linux基本环境 修改主机名 hostnamectl set-hostname $name 关闭防火墙及selinux …

postman汉化

一、postman历史版本下载:Postman 10.24.16 Download for Windows / Old Versions / FileHorse.comhttps://www.filehorse.com/download-postman/old-versions/ 二、汉化包下载: Releases hlmd/Postman-cn GitHubPostman汉化中文版. Contribute to h…

哪个牌子的迷你洗衣机比较好?别错过五款高分内衣洗衣机品牌!

随着内衣洗衣机的流行,很多小伙伴在纠结该不该入手一款内衣洗衣机,专门来洗一些贴身衣物,答案是非常有必要的,因为我们现在市面上的大型洗衣机只能做清洁,无法对我们的贴身衣物进行一个高强度的清洁,而小小…

1:100万中国地貌类型数据

中国1:100万地貌类型空间分布数据来源于《中华人民共和国地貌图集(1:100万)》,是全面反映我国地貌宏观规律、揭示区域地貌空间分异的国家级基本比例尺图集,是我国目前已出版的百万系列专题图中海陆一体化的基本比例尺图…

【Python使用】python高级进阶知识md总结第8篇:TCP 网络应用程序开发流程,1. TCP 网络应用程序开发流程的介绍【附代码文档】

python高级进阶全知识知识笔记总结完整教程(附代码资料)主要内容讲述:操作系统,虚拟机软件。ls命令选项,mkdir和rm命令选项。压缩和解压缩命令,文件权限命令。编辑器 vim,软件安装。获取进程编号…

vue简单使用二(循环)

目录 属性绑定 if判断&#xff1a; for循环&#xff1a; 属性绑定 代码的形式来说明 三元表达式的写法&#xff1a; if判断&#xff1a; for循环&#xff1a; 完整代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"…

竞赛 基于GRU的 电影评论情感分析 - python 深度学习 情感分类

文章目录 1 前言1.1 项目介绍 2 情感分类介绍3 数据集4 实现4.1 数据预处理4.2 构建网络4.3 训练模型4.4 模型评估4.5 模型预测 5 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于GRU的 电影评论情感分析 该项目较为新颖&#xff0c;适合作为竞…

2024年【高处安装、维护、拆除】试题及解析及高处安装、维护、拆除模拟试题

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2024年【高处安装、维护、拆除】试题及解析及高处安装、维护、拆除模拟试题&#xff0c;包含高处安装、维护、拆除试题及解析答案和解析及高处安装、维护、拆除模拟试题练习。安全生产模拟考试一点通结合国家高处安装…

四维轻云|如何使用场景在线协作功能?

众所周知&#xff0c;四维轻云是一款轻量化的地理空间数据管理云平台&#xff0c;支持地理空间数据的在线管理、编辑以及分享。平台有项目管理、数据上传、场景搭建、发布分享、素材库等功能模块。现在&#xff0c;就为大家介绍一下如何使用场景协作编辑功能。 1、协作模式开启…

算法题解记录11+++从前序与中序遍历序列构造二叉树(百日筑基)

题目描述&#xff1a; 给定两个整数数组 preorder 和 inorder &#xff0c;其中 preorder 是二叉树的先序遍历&#xff0c; inorder 是同一棵树的中序遍历&#xff0c;请构造二叉树并返回其根节点。 示例 1: 输入: preorder [3,9,20,15,7], inorder [9,3,15,20,7] 输出: [3,…

网上订餐系统|基于springboot的网上订餐系统设计与实现(源码+数据库+文档)

网上订餐系统目录 目录 基于springboot的网上订餐系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、用户功能模块的实现 &#xff08;1&#xff09;用户注册界面 &#xff08;2&#xff09;用户登录界面 &#xff08;3&#xff09;菜品详情界面 &#xff08…