我的两个医学数据分析技术思路

我的两个医学数据分析技术思路

从临床上获得的或者公共数据库数据这种属于观察性研究,是对临床诊疗过程中自然产生的数据进行分析而获得疾病发生发展的规律等研究成果。再细分,可以分为独立危险因素鉴定和预测模型构建两种。

独立危险因素鉴定是一直以来的研究内容,目的是研究疾病预后的影响因素或者开发诊断指标,早期是通过统计学和逻辑回归模型等方法进行研究;而预测模型构建是后来出现的,把多个独立危险因素集中起来共同对疾病结局进行预测或者诊断疾病,达到更好地诊断和治疗疾病的目的。

数据分析技术新的发展也给以上两部分内容带来了新的面貌,这里总结个人在这两方面的分析技术思路,供大家借鉴。

机器学习算法主导的独立危险因素鉴定

这里的机器学习主要是指xgboost等非线性模型,传统的是使用多因素逻辑回归作为独立危险因素鉴定的最终结果,线性模型事先假定变量之间的关系是线性的被认为可能造成了分析结果的不准确,所以现在用xgboost等非线性模型来克服这个缺点,但是非线性模型就没有象OR值这样能反映变量间关联强度的指标,等到SHAP分析这样可以解释模型的工具出现之后,机器学习算法主导的独立危险因素鉴定才形成套路。
技术思路:

  1. 变量信息表(传统的表1),展示变量的分布信息(平均值和标准差等)

  2. Boruta算法筛选变量,这是近年才流行的方法,微小的关联也能筛选出来,所以不担心遗漏有意义的变量。
    在这里插入图片描述

  3. 构建xgboost等非线性模型并展示模型效能,这里良好的模型性能代表所选择的变量与结局变量之间有良好的相关性,在这个前提下,后续的分析才是有价值的。
    在这里插入图片描述

  4. SHAP分析展示变量的整体贡献,可以选择排名靠前的变量或者所有的变量进行后续的分析;
    在这里插入图片描述

  5. SHAP分析展示单个变量随变量值变化其对结局变量贡献(某变量的SHAP值)的变化,结合立方样条曲线拟合确定关键的点(SHAP值为0时对应的点和shap值大于0的曲线上的拐点)
    在这里插入图片描述

  6. SHAP分析展示变量间的交互作用,展示变量间的交互作用。
    在这里插入图片描述

  7. 其它,可以加入传统的线性模型的分析方法以从不同方面展示独立危险因素;如果收集了同类变量,还可以比较同类变量之间与结局变量相关性的差异;如果得到的独立危险因素够多,可以进行预测模型的构建,否则也可以独立成文。

临床预测模型构建(从数据到应用)

临床预测模型在这里不多介绍。
技术思路:

  1. 变量的展示(表1)

  2. Boruta,Lasso等方法选择变量,传统的通过单因素分析p值的半自动方法应该淘汰了。
    在这里插入图片描述

  3. 模型构建和评价,评价包括内部评价和外部评价,ROC曲线和校准曲线等我们已经耳熟能详的指标。这里可以是单个模型,也可以是相似结局的一组模型。
    在这里插入图片描述

  4. SHAP分析等解释模型,这里以汇总结果为主,从整体评价变量对模型的贡献;
    在这里插入图片描述

  5. DCA分析,比较模型间的净收益以选择模型,或者变量间的净收益来评价变量;
    在这里插入图片描述

  6. 构建列线图或者预测模型APP,如果是APP,推荐融入SHAP分析的个体评价,对单个预测结果进行解释,可以展示变量当前值对预测结果的贡献,在临床实践中可以解析为当前患者的病因是什么;
    在这里插入图片描述

  7. 后续,确定后续的临床措施(预测模型阳性采取的检验或者治疗措施)并进行预测模型临床影响力评价(一般是随机对照试验)。

最后

当拿到一份数据,可以先做预分析,如果得到的相关变量较多,就可以做预测模型,如果不够多,就可以考虑独立危险因素分析。

个人感觉,数据分析类的研究关键在于数据,大样本,自己收集的,有特点的数据更容易做出有意义的研究。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/31335.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

时序数据库TimescaleDB基本操作示例

好的&#xff01;以下是使用 TimescaleDB 的 Java 示例&#xff08;基于 JDBC&#xff0c;因为 TimescaleDB 是 PostgreSQL 的扩展&#xff0c;官方未提供独立的 Java SDK&#xff09;&#xff1a; 1. 添加依赖&#xff08;Maven&#xff09; <dependency><groupId&g…

HTML-网页介绍

一、网页 1.什么是网页&#xff1a; 网站是指在因特网上根据一定的规则&#xff0c;使用 HTML 等制作的用于展示特定内容相关的网页集合。 网页是网站中的一“页”&#xff0c;通常是 HTML 格式的文件&#xff0c;它要通过浏览器来阅读。 网页是构成网站的基本元素&#xf…

Mybatis 的关联映射(一对一,一对多,多对多)

前言 在前面我们已经了解了&#xff0c;mybatis 的基本用法&#xff0c;动态SQL&#xff0c;学会使用mybatis 来操作数据库。但这些主要操作还是针对 单表实现的。在实际的开发中&#xff0c;对数据库的操作&#xff0c;常常涉及多张表。 因此本篇博客的目标&#xff1a;通过my…

vue3通过render函数实现一个菜单下拉框

背景说明 鼠标移动到产品服务上时&#xff0c;出现标红的下拉框。 使用纯css的方案实现最简单&#xff0c;但是没什么技术含量&#xff0c;弃之&#xff1b;使用第三方组件库&#xff0c;样式定制麻烦弃之。因此&#xff0c;我们使用vue3直接在页面创建一个dom作为下拉框吧。…

Docker介绍和安装

跨平台快速运行应用快速构建应用快速分享应用 docker是用来加速,构建,分享,运行的容器 在 Docker 的架构中&#xff0c;Client、Docker Host 和 Registry 是三个核心组成部分&#xff0c;它们各自承担不同的功能和作用。以下是对这三部分的详细描述&#xff1a; Docker的基本…

nnMamba:基于状态空间模型的3D生物医学图像分割、分类和地标检测

摘要 本文提出了一种基于状态空间模型&#xff08;SSMs&#xff09;的创新架构——nnMamba&#xff0c;用于解决3D生物医学图像分割、分类及地标检测任务中的长距离依赖建模难题。nnMamba结合了卷积神经网络&#xff08;CNN&#xff09;的局部特征提取能力与SSMs的全局上下文建…

elasticsearch商业产品

Elasticsearch商业产品介绍 在当今数字化时代&#xff0c;数据如同石油一样珍贵。而要从海量的数据中提取有价值的信息&#xff0c;则需要强大的工具。这就是Elasticsearch商业产品的用武之地。Elasticsearch是一款开源的搜索引擎&#xff0c;它能够快速地存储、搜索和分析大规…

git安装,配置SSH公钥(查看版本、安装路径,更新版本)git常用指令

目录 一、git下载安装 1、下载git 2、安装Git‌&#xff1a; 二、配置SSH公钥 三、查看安装路径、查看版本、更新版本 四、git常用指令 1、仓库初始化与管理 2、配置 3、工作区与暂存区管理 4、提交 5、分支管理 6、远程仓库管理 7、版本控制 8、其他高级操作 一…

c++的基础排序算法

一、快速排序 1. 选择基准值&#xff08;Pivot&#xff09; 作用 &#xff1a;从数组中选择一个元素作为基准&#xff08;Pivot&#xff09;&#xff0c;用于划分数组。常见选择方式 &#xff1a; 固定选择最后一个元素&#xff08;如示例代码&#xff09;。随机选择&#xf…

kali linux 漏洞扫描

Kali Linux是一款专为渗透测试和网络安全领域而设计的操作系统&#xff0c;它集成了大量的安全测试工具&#xff0c;可以帮助安全专家和黑客发现网络中的漏洞并加以修补。在Kali Linux中&#xff0c;漏洞扫描是一个非常重要的功能&#xff0c;它可以帮助用户快速、准确地发现系…

CI/CD—Jenkins配置Maven+GitLab自动构建jar包

一、安装Maven插件通过Maven构建项目 1、在Jenkins上安装Maven Integration plugin插件 2、创建一个maven项目 2.1、填写构建的名称和描述等 2.2、填写连接git的url 报错&#xff1a;无法连接仓库&#xff1a;Error performing git command: git ls-remote -h http://192.168.…

SpringBoot使用Nacos进行application.yml配置管理

Nacos是阿里巴巴开源的一个微服务配置管理和服务发现的解决方案。它提供了动态服务发现、配置管理和 服务管理平台。Nacos的核心功能包括服务发现、配置管理和动态服务管理&#xff0c;使得微服务架构下的服务治理 变得简单高效。 Nacos的设计基于服务注册与发现、配置管理、动…

深度学习分类回归(衣帽数据集)

一、步骤 1 加载数据集fashion_minst 2 搭建class NeuralNetwork模型 3 设置损失函数&#xff0c;优化器 4 编写评估函数 5 编写训练函数 6 开始训练 7 绘制损失&#xff0c;准确率曲线 二、代码 导包&#xff0c;打印版本号&#xff1a; import matplotlib as mpl im…

学习资料电子版 免费下载的网盘网站(非常全!)

我分享一个私人收藏的电子书免费下载的网盘网站&#xff08;学习资料为主&#xff09;&#xff1a; link3.cc/sbook123 所有资料都保存在网盘了&#xff0c;直接转存即可&#xff0c;非常的便利&#xff01; 包括了少儿&#xff0c;小学&#xff0c;初中&#xff0c;中职&am…

解锁 AI 量化新境界:Qbot 携手 iTick

在量化投资的汹涌浪潮中&#xff0c;你是否渴望拥有一个强大且便捷的工具&#xff0c;助你乘风破浪&#xff0c;驶向财富的彼岸&#xff1f;如今&#xff0c;Qbot 与 iTick 强强联合&#xff0c;为广大投资者和开发者打造出一个前所未有的 AI 量化生态系统。 Qbot&#xff1a;量…

前端性能优化

在当今快节奏的互联网环境中&#xff0c;前端性能优化不仅能提升用户体验&#xff0c;还能直接影响网站的SEO排名和用户留存率。那么&#xff0c;如何做好前端性能优化呢&#xff1f; 前端性能优化成为提升用户体验和业务成果的关键。研究显示&#xff0c;优化网页加载速度和运…

谷歌AI最新发布的可微分逻辑元胞自动机(DiffLogic CA)

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

忘记dedecms后台超级管理员账号和密码的解决方案

解决方案&#xff1a; 方案一、数据库修改&#xff1a; 1、前提是您能登录到数据库后台&#xff0c;登录MySQL数据库管理工具&#xff08;如phpMyAdmin&#xff09; 2、打开数据库中的 dede_admin 表&#xff0c;找到管理员记录&#xff0c;将 pwd 字段的值改成 f297a57a5a7…

numpy广播性质

一、核心规则 一维数组本质 shape (n,)的数组是无方向向量&#xff0c;既非严格行向量也非列向量 自动广播机制 在矩阵乘法(或np.dot())中&#xff0c;一维数组会自动调整维度&#xff1a; 前乘时视为行向量 shape (1,n)后乘时视为列向量 shape (n,1) 二、运算类型对比 假…

对Docker的一些基本认识

一、Docker简介 首先Docker 是一个用于开发、交付和运行应用程序的开放平台。它 是一个开源的应用容器化平台&#xff0c;通过轻量级容器技术实现软件的标准化打包、分发与运行。Docker基于 Go语言 &#xff0c;完全使用沙箱机制&#xff0c;相互之间不会有任何接口&#xff0…