【高阶数据结构】哈希表 {哈希函数和哈希冲突;哈希冲突的解决方案:开放地址法,拉链法;红黑树结构 VS 哈希结构}

一、哈希表的概念

  • 顺序结构以及平衡树

    顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系。因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N);平衡树中为树的高度,即O(log_2 N),搜索的效率取决于搜索过程中元素的比较次数。

  • 哈希表

    如果构造一种存储结构,通过某种转换函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系。那么在查找时可以不经过任何比较,通过该函数一次直接从表中得到要搜索的元素:

    • 当向该结构中插入元素时:根据待插入元素的关键码,通过转换函数计算出该元素的存储位置并按此位置进行存放。

    • 当从该结构中搜索元素时:对元素的关键码进行同样的计算,获得元素的存储位置。

    该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数构造出来的结构称为哈希表(Hash Table或者称散列表)


二、哈希函数和哈希冲突

  • 哈希函数

    哈希函数的设计原则:

    1. 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
    2. 哈希函数计算出来的地址能均匀分布在整个空间中
    3. 哈希函数应该比较简单

    常见的哈希函数:

    1. 直接定址法

      取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B
      优点:简单、均匀、不存在哈希冲突
      缺点:需要事先知道关键字的分布情况,只适合查找分布相对集中的情况。
      举例:1.编程题:字符串中第一个只出现一次字符 2.排序算法:计数排序

    2. 除留余数法

      设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数;

      按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址

    例如:数据集合{1,7,6,4,5,9};
    哈希函数采用除留余数法:hash(key) = key % capacity; capacity为存储元素底层空间的总大小。

在这里插入图片描述

问:按照上述哈希方式,向集合中插入元素44,会出现什么问题?

  • 哈希冲突

    • 对于两个数据元素的关键字k_i k_j,有k_i != k_j,但有:Hash(k_i) ==Hash(k_j)

      • 即:不同关键字通过哈希函数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞

      • 把关键码不同而具有相同哈希地址的数据元素称为“同义词”。

    问:发生哈希冲突该如何处理呢?


三、哈希冲突的解决方案

解决哈希冲突两种常见的方法是:开放地址法和链地址法

3.1 开放地址法

开放地址法:当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的下一个空位置中去。那如何寻找下一个空位置呢?

3.1.1 线性探测

  1. 线性探测
    比如2.2中的场景,现在需要插入元素44,先通过哈希函数计算哈希地址为4,因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。
    线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

    • 插入
      通过哈希函数获取待插入元素在哈希表中的位置
      如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素

    在这里插入图片描述

    • 删除
      采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。
      比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素
      哈希表每个空间给个标记:EMPTY此位置为空, EXIST此位置已经有元素, DELETE元素已经删除

      插入时:对于EMPTY和DELETE标记的位置可以进行插入,EXIST不能插入。

      搜索时:遇到EXIST和DELETE标记的位置继续向后搜索,遇到EMPTY结束。

    • 扩容

      思考:哈希表什么情况下进行扩容?如何扩容?

      在这里插入图片描述

      载荷因子(空间占用率)达到基准值(0.7~0.8)就扩容。

      基准值越大,哈希冲突的概率越大,查找效率越低,但空间利用率越高。

      基准值越小,哈希冲突的概率越小,查找效率越高,但空间利用率越低。

    • Hash算法

      • 对于类型不匹配或者复杂类型的key值,不能直接求余计算哈希地址。这时我们需要一种算法,将不匹配或复杂类型的key转化为无符号整型,然后才能通过除留余数法计算哈希地址。我们将这样的算法称为Hash算法。

      • Hash算法的设计原则是:尽量避免出现key值不同但转换后的无符号整型相同的情况。使不同的key值转换成唯一、独特的无符号整型数据。降低哈希冲突的概率。

      • 以字符串Hash算法为例:

        • 问:为什么不选字符串首字母的assic码做key?

          答:字符的assic码共有128个,而字符串有无数种组合方式。单靠首字母的assic码区分字符串,违背了Hash算法的设计原则。会使哈希冲突的概率变大,所以我们取字符串所有字符的assic码和做key。

        • 仍然无法解决的问题:abcd acbd aadd

          最终方案:BKDR算法,在每次加和时累乘131,能使哈希冲突的概率大大降低。也是Java目前采用的字符串Hash算法。

    • 线性探测的实现

        enum State{EMPTY,DELETE,EXIST};template <class K, class V>struct HashData{pair<K,V> _kv;State _state = EMPTY;};//HashKey用于将不匹配或复杂的key值转化为size_t类型,然后才能通过除留余数法计算哈希地址。//对于不匹配的内置类型做强转:template <class K>struct HashKey{size_t operator()(const K& k){return (size_t)k;}};//对于常见复杂类型提供模版的特化:template <>struct HashKey<string>{size_t operator()(const string& str){size_t ret = 0;for(auto ch : str){ret += ch;ret *= 131; //BKDR算法}return ret;}};template <class K, class V, class Hash = HashKey<K>>class HashTable{vector<HashData<K,V>> _table;size_t _size= 0; //哈希表中的实际有效数据public:bool insert(const pair<K,V>& kv){//不允许键值冗余if(find(kv.first) != nullptr)return false;//检查载荷因子,进行扩容,复用下面的插入逻辑if(_table.size() == 0 || _size*10/_table.size() >= 7){int newsize = _table.size()==0? 10 : _table.size()*2;HashTable newHT; //创建新的哈希表对象newHT._table.resize(newsize);for(auto &e : _table){if(e._state == EXIST)newHT.insert(e._kv); //调用成员函数insert重新计算元素的映射位置}//交换两个哈希表的vector//函数返回前newHT包含扩容前的vector会被析构_table.swap(newHT._table); }Hash hash; //hash算法会将不匹配或复杂的key值转化为size_t类型int hashi = hash(kv.first)%_table.size(); //线性探测//遇到EMPTY或DELETE位置停下while(_table[hashi]._state == EXIST){++hashi;hashi %= _table.size(); //如果超出范围需折返到开头继续探测}_table[hashi]._kv = kv;_table[hashi]._state = EXIST;++_size;return true;}HashData<K,V>* find(const K& k){if(_table.size() == 0)return nullptr; //空表返回nullptrHash hash;int hashi = hash(k)%_table.size(); int start = hashi;//线性探测//遍历到EMPTY位置表示对应key值的元素不存在。//注意:遇到DELETE位置不能停,要继续向后查找。while(_table[hashi]._state != EMPTY){if(_table[hashi]._state == EXIST && _table[hashi]._kv.first == k){return &_table[hashi]; //找到返回数据地址}++hashi;hashi%=_table.size();//处理极端情况:表中元素的状态全是DELETEif(hashi == start) break;}return nullptr; //找不到返回nullptr}bool erase(const K& k){HashData<K,V>* ret = find(k);if(ret == nullptr)return false;else{//线性探测采用标记的伪删除法来删除一个元素ret->_state = DELETE; //所谓删除就是将对应key值的元素状态改为DELETE--_size; //记得修改大小哦return true;}}void printHT(){ //打印哈希表for(int i=0; i<_table.size(); ++i){if(_table[i]._state == EXIST){printf("[%d]:%d ", i, _table[i]._kv.first);//cout << _table[i]._kv.first << ":" << _table[i]._kv.second << endl; }else{printf("[%d]:* ", i);}}}};
    

3.1.2 二次探测

  1. 二次探测

线性探测的优点是实现非常简单,但其缺陷是元素之间相互占用位置导致产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨着往后逐个去找:H_i = (H_0 + i )% mH_i = (H_0 - i )% m

因此二次探测为了避免该问题,找下一个空位置的方法为:H_i = (H_0 + i^2 )% m, 或者 H_i = (H_0 - i^2 )% m

其中:i =1,2,3…。 H_0是通过散列函数Hashfunc(key)对元素的关键码 key 进行计算得到的位置。m是表的大小。

  • 将线性探测改为二次探测

      bool insert(const pair<K,V>& kv){if(find(kv.first) != nullptr)    return false;    //检查载荷因子,进行扩容    //......Hash hash;    int i = 1;    int hashi = hash(kv.first)%_table.size();     //二次探测while(_table[hashi]._state == EXIST){hashi += i*i; //加i的平方hashi %= _table.size();++i;}_table[hashi]._kv = kv;_table[hashi]._state = EXIST;++_size;return true;}
    

    提示:对应的find函数也应该改为二次探测才能正确运行!

    二次探测只能在一定程度上缓解线性探测带来的“洪水效应”,但其终归是占用式的,没有从根源上解决因占用而导致的冲突问题。


3.2 链地址法

  • 概念

    链地址法又叫拉链法,首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。

    仍以2.2中的场景为例:

    在这里插入图片描述

    从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。

  • 对比哈希表和红黑树

    • 查找

      哈希表的查找更快:O(1);红黑树的查找:O(log_2N)

      如果某个哈希桶过长(一般不会),可以考虑挂红黑树,以提高该哈希桶的搜索速度。

    • 插入

      红黑树的插入:消耗主要在查找空位置O(log_2N)+变色O(log_2N)+旋转O(1) ==> O(log_2N)。

      哈希表的插入:消耗主要在扩容,不仅要开空间拷贝数据,还要重新计算每个元素的哈希地址。扩容的时间复杂度O(N)

      使用rehash/reserve提前开空间,提高哈希表的插入效率。

unordered_map和unordered_set底层的哈希结构采用的就是开散列法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/313401.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【第1节】书生·浦语大模型全链路开源开放体系

目录 1 简介2 内容&#xff08;1&#xff09;书生浦语大模型发展历程&#xff08;2&#xff09;体系&#xff08;3&#xff09;亮点&#xff08;4&#xff09;全链路体系构建a.数据b 预训练c 微调d 评测e.模型部署f.agent 智能体 3 相关论文解读4 ref 1 简介 书生浦语 InternLM…

深入理解GCC/G++在CentOS上的应用

文章目录 深入理解GCC/G在CentOS上的应用编译C和C源文件C语言编译C语言编译 编译过程的详解预处理编译汇编链接 链接动态库和静态库静态库和动态库安装静态库 结论 深入理解GCC/G在CentOS上的应用 在前文的基础上&#xff0c;我们已经了解了CentOS的基本特性和如何在其上安装及…

Python零基础从小白打怪升级中~~~~~~~多线程

线程安全和锁 一、全局解释器锁 首先需要明确的一点是GIL并不是Python的特性&#xff0c;它是在实现Python解析器(CPython)时所引入的一个概念。 GIL全称global interpreter lock&#xff0c;全局解释器锁。 每个线程在执行的时候都需要先获取GIL&#xff0c;保证同一时刻只…

IDEA plugins 好用的插件集

IDEA plugins RestfulToolkit 1. 安装插件 File–>Settings --> plugins --> RestfulToolkit 2.插件有点&#xff1a; 2.1、帮助把项目中的 RestURL 按照项目汇总出来&#xff0c;找到对应URL直接在IDEA上面进行请求测试。 2.2、开发Java Web页面项目&#xff0c;经…

学习笔记------时序约束之时钟周期约束

本文摘自《VIVADO从此开始》高亚军 主时钟周期约束 主时钟&#xff0c;即从FPGA的全局时钟引脚进入的时钟或者由高速收发器输出的时钟。 对于时钟约束&#xff0c;有三个要素描述&#xff1a;时钟源&#xff0c;占空比和时钟周期。 单端时钟输入 这里我们新建一个工程&#x…

【Proteus】51单片机对直流电机的控制

直流电机&#xff1a;输出或输入为直流电能的旋转电机。能实现直流电能和机械能互相转换的电机。把它作电动机运行时是直流电动机&#xff0c;电能转换为机械能&#xff1b;作发电机运行时是直流发电机&#xff0c;机 械能转换为电能。 直流电机的控制&#xff1a; 1、方向控制…

手撕AVL树(map和set底层结构)(1)

troop主页 今日鸡汤&#xff1a;Action may out always bring happiness;but there is no happiness without action. 行动不一定能带来快乐&#xff0c;但不行动一定不行 C之路还很长 手撕AVL树 一 AVL树概念二 模拟实现AVL树2.1 AVL节点的定义 三 插入更新平衡因子&#xff0…

vim相关指令

vim的各种模式及其转换关系图 vim 默认处于命令模式&#xff01;&#xff01;&#xff01; 模式之间转换的指令 除【命令模式】之外&#xff0c;其它模式要切换到【命令模式】&#xff0c;只需要无脑 ESC 即可&#xff01;&#xff01;&#xff01; [ 命令模式 ] 切换至 [ 插…

联合体共用体--第二十三天

1.结构体元素有各自单独的空间 共用体元素共享空间&#xff0c;空间大小由最大类型确定 2.结构体元素互不影响&#xff0c;共用体赋值会导致覆盖

javaWeb智能医疗管理系统

简介 在当今快节奏的生活中&#xff0c;智能医疗系统的崛起为医疗行业带来了一场革命性的变革。基于JavaWeb技术开发的智能医疗管理系统&#xff0c;不仅为医疗机构提供了高效、精准的管理工具&#xff0c;也为患者提供了更便捷、更个性化的医疗服务。本文将介绍一个基于SSM&a…

一些重新开始面试之后的八股文汇总

一、内存中各项名词说明 1、机器内存概念说明 linux中的free命令可以查看机器的内存使用情况&#xff0c;vmstat命令也可以 其中不容易被理解的是&#xff1a; 内存缓冲/存数&#xff08;buffer/cached&#xff09; 1.buffers和cache也是RAM划分出来的一部分地址空间 2.buff…

SQL优化——统计信息

文章目录 1、统计信息1.1、表的统计信息1.2、列的统计信息1.3、索引的统计信息 2、统计信息重要参数设置3、检查统计信息是否过期4、扩展统计信息5、动态采样6、定制统计信息收集策略 只有大表才会产生性能问题&#xff0c;那么怎么才能让优化器知道某个表多大呢&#xff1f;这…

移动硬盘故障解析:NTFS属性0字节,双击无法访问的数据恢复之道

一、故障现象&#xff1a;移动硬盘NTFS属性0字节&#xff0c;双击无法访问 在日常使用移动硬盘的过程中&#xff0c;有时我们会遇到一个令人困惑的问题&#xff1a;移动硬盘在接入电脑后&#xff0c;显示其属性为NTFS格式&#xff0c;但容量却显示为0字节&#xff0c;且双击无…

【Delphi 爬虫库 1】GET和POST方法

文章目录 1.最简单的Get方法实现2.可自定义请求头、自定义Cookie的Get方法实现3.提取响应协议头4.Post方法实现单词翻译 爬虫的基本原理是根据需求获取信息并返回。就像当我们感到饥饿时&#xff0c;可以选择自己烹饪食物、外出就餐&#xff0c;或者订外卖一样。在编程中&#…

airtest-ios真机搭建实践

首先阅读4 ios connection - Airtest Project Docs 在Windows环境下搭建Airtest对iOS真机进行自动化测试的过程相对复杂&#xff0c;因为iOS的自动化测试通常需要依赖Mac OS系统&#xff0c;但理论上借助一些工具和服务&#xff0c;Windows用户也可以间接完成部分工作。下面是…

软考中级工程师网络技术第二节网络体系结构

OSPF将路由器连接的物理网络划分为以下4种类型&#xff0c;以太网属于&#xff08;25&#xff09;&#xff0c;X.25分组交换网属于&#xff08;非广播多址网络NBMA&#xff09;。 A 点对点网络 B 广播多址网络 C 点到多点网络 D 非广播多址网络 试题答案 正确答案&#xff1a; …

数据结构初阶:二叉树(二)

二叉树链式结构的实现 前置说明 在学习二叉树的基本操作前&#xff0c;需先要创建一棵二叉树&#xff0c;然后才能学习其相关的基本操作。由于现在对二叉树结构掌握还不够深入&#xff0c;为了降低学习成本&#xff0c;此处手动快速创建一棵简单的二叉树&#xff0c;快速进入二…

学习Rust的第5天:控制流

Control flow, as the name suggests controls the flow of the program, based on a condition. 控制流&#xff0c;顾名思义&#xff0c;根据条件控制程序的流。 If expression If表达式 An if expression is used when you want to execute a block of code if a condition …

list基础知识

list 1.list 的定义和结构 list 是双向链表&#xff0c;是C的容器模板&#xff0c;其接收两个参数&#xff0c;即 list(a,b) 其中 a 表示指定容器中存储的数据类型&#xff0c;b 表示用于分配器内存的分配器类型&#xff0c;默认为 list <int>; list 的特点&#xff1a;…

springboot中mongodb连接池配置-源码分析

yml下spring.data.mongodb 以前mysql等在spring.xxx下配置&#xff0c;现在springboot新版本&#xff08;小编3.2.3&#xff09;在spring.data.xxx下了&#xff0c;如下所示&#xff0c;mongodb的配置在spring.data.mongodb下&#xff1a; 连接池相关参数配置-源码分析 拼接在…