每日一题:跳跃游戏II

给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]

每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:

  • 0 <= j <= nums[i] 
  • i + j < n

返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]

示例 1:

输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是2。
从下标为 0 跳到下标为 1 的位置,跳1步,然后跳3步到达数组的最后一个位置。

示例 2:

输入: nums = [2,3,0,1,4]
输出: 2

提示:

  • 1 <= nums.length <= 10^{4}
  • 0 <= nums[i] <= 1000
  • 题目保证可以到达 nums[n-1]

分解题目:

  • 目标:求解跳到最后一个位置的最小跳跃数
  • 依赖于:存在一个位置能跳到最后一个位置(题目已经保证此项)
                  跳到这个位置的最小跳跃数。
  • 如果用 i 来表示最后一次跳跃,i - 1表示的倒数第二次跳跃,很明显,求解 i 的最小跳跃数可以转换为求解 i - 1的最小跳跃数。

至此,可以用动态规划进行解决。

定义:dp[ i ]表示跳跃到第 i 个位置的最小跳跃数。dp[n - 1]即为所求,边界值dp[0] = 0。

对于第 i 个位置,可能有多个前置的位置可以跳跃到达,我们需要找到其中的最小值,即:

j from 0 to i
if(nums[j]+j>i)  dp[i]=min(dp[i],dp[j]+1); 

完整代码:

class Solution {
public:int jump(vector<int>& nums) {int n = nums.size();vector<int> dp(n,n);dp[0] = 0;for(int i = 1;i < n;++i){for(int j = 0; j < i;++j){if(nums[j] + j >= i){dp[i] = min(dp[i],dp[j] + 1);}} }return dp[n-1];}
};

然而这里的动态规划反而引入了更多的重复计算。

如果换成贪心算法:

class Solution {
public:int jump(vector<int>& nums) {int jumps = 0;int end = 0;int farthest = 0;for (int i = 0; i < nums.size() - 1; i++) {farthest = max(farthest, nums[i] + i);if (i == end) {jumps++;end = farthest;if (end >= nums.size() - 1) {break;}}}return jumps;}
};
  • jumps是跳跃的次数,end是当前的终点,farthest是当前点跳跃能够到达的最远点。
  • 遍历数组,除了最后一个元素,因为最后一个元素的位置不需要跳跃,自己就能到达自己。
  • 我们时刻维护从当前点到达的最远距离,当我们到达了当前终点,就把最远距离设置成终点,这里体现贪心的思想。
  • 同时,当到达了end时,也说明需要进行一次跳跃。

即:每次在上次能跳到的范围(i,end)内选择一个能跳的最远的位置(也就是能跳到farthest位置的点)作为下次的起跳点。

对于初学者,这看上去非常的反直觉,这是不是局部最优?为什么是全局最优?如果出现当前跳的最远,但是下下步跳得近了怎么办?

这里需要理解end的作用,如果把end抽象成一个分隔符,所谓跳跃过程就是在数组内插入分隔符的过程,使最终分出的子数组数量最小。

而fareset的作用是,保留上一个end到当前end这个区间范围内可以达到的最远值。

注意区间范围这个点。

在贪心算法中,每一步的end都是当前范围能到达的最远点,也即最大值farest,所以最终分出的间隔就会更少。

下面用一个具体图例做进一步解释,初始状态,进行第一次跳跃:

 跳跃后在区间内遍历维护最远值farest:

这里有人可能会说,看起来像恰好1就跳到了较大值10。那如果我们把这里的1换成0会发生什么?

可以看到维护的farest,才是起到关键作用的值。和nums[end]中的值并无全部关系。 这也是上面提到的,保留上一个end到当前end这个区间范围内可以达到的最远值。

图中箭头描述的是end变化的过程,真实的跳跃过程和end的变化过程数量相同,但是路径不一定相同。(每条end箭头仅对应一条跳跃,比如这里是从2跳到3跳到10。)

继续遍历:

只要理解了end表示间隔且和真实跳跃一一对应,farest表示一个区间内跳到的最远距离这两个概念,这里的贪心算法就很好理解了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/313622.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

react —— useState 深入

基础用法 useState Hook 提供了这两个功能&#xff1a; State 变量 在第一次重新渲染期间&#xff0c;这将具有作为参数传递的值State setter 函数 set 函数将允许将状态的值更新为不同的值&#xff0c;如果 set 函数中提供的值不同&#xff0c;则将触发重新渲染。 注意&…

获取boss直聘城市地区josn数据

获取boss直聘城市地区josn数据 当我需要爬取多个城市的地区的时候&#xff0c;只能手动点击&#xff0c;然后一个一个看 结果&#xff1a; 能看到所有区域所有子地区的地区代码 解析该JSON数据 import pandas as pd import requests code[] area[] 城市代码101210100 res…

【Qt常用控件】—— 多元素控件

目录 1.1 List Widget 1.2 Table Widget 1.3 Tree Widget 1.4 小结 Qt 中提供的多元素控件有: QListWidget QListView QTableWidget QTableView QTreeWidget QTreeView xxWidget 和 xxView 之间的区别 以 QTableWidget 和 QTableView 为例&#xff1a; QTableView 是基于…

Oracle中rman使用记录

最近在项目中&#xff0c;遇到使用RMAN的操作来恢复数据库中某个时间归档日志&#xff0c;RMAN的原理和理解&#xff0c;网友们百度了解一下。我重点将实操部分了。直接上实验环节&#xff0c;让网友更懂。&#xff08;特别提醒&#xff1a;我是1:1用VMware克隆数据库进行RMAN还…

Mockito

小王学习录 依赖注解MockSpy静态方法单元测试InjectMocks 注解Captor 注解BeforeAll 和 BeforeEach的区别ParameterizedTestValueSourceEnumSourceCsvSourceMethodSource 打桩打桩方式打桩参数匹配方式 依赖 <!-- https://mvnrepository.com/artifact/org.mockito/mockito-i…

Armpro脱壳软件搭建教程附源代码

PHP8.0版本&#xff0c;数据库8.0版本 1.配置注册机文件&#xff0c;打开将arm.zip/res目录下&#xff0c;mt管理器搜索将其全部修改为你自己的域名或者是服务器IP 2.然后建立数据库 数据库账号arm 数据库用户名arm 数据库密码EsZfXY4tD3h2NNA4 3.导入数据库 4.配置Redi…

03-JAVA设计模式-备忘录模式

备忘录模式 什么是备忘录模式 Java中的备忘录模式&#xff08;Memento Pattern&#xff09;是一种行为型设计模式&#xff0c;它允许在不破坏封装性的前提下捕获一个对象的内部状态&#xff0c;并在该对象之外保存这个状态&#xff0c;以便以后可以将对象恢复到原先保存的状态…

配置有效的防爬虫技术保护网站

本文主要介绍了防爬虫的概念、目的以及一些有效的防爬虫手段。防爬虫是指网站采取各种技术手段阻止爬虫程序对其数据进行抓取的过程。为了保护网站的数据和内容的安全性&#xff0c;防止经济损失和恶意竞争&#xff0c;以及减轻服务器负载&#xff0c;网站需要采取防爬虫机制。…

统一所有 LLM API:支持预算与速率限制 | 开源日报 No.229

BerriAI/litellm Stars: 6.7k License: NOASSERTION litellm 是一个使用 OpenAI 格式调用所有 LLM API 的工具。它支持 Bedrock、Azure、OpenAI、Cohere、Anthropic 等 100 多种 LLMs&#xff0c;提供企业级代理服务器和稳定版本 v1.30.2。 主要功能和优势包括&#xff1a; 将…

探索大型语言模型(LLM)在人类性格个性评估(MBTI)中的前景与应用

1.概述 大型语言模型&#xff08;LLM&#xff09;如ChatGPT在各个领域的应用确实越来越广泛&#xff0c;它们利用庞大的数据集进行训练&#xff0c;以模拟人类的语言理解和生成能力。这些模型在提供信息、解答问题、辅助决策等方面表现出了强大的能力&#xff0c;但它们并不具…

[集群聊天项目] muduo网络库

目录 网络服务器编程常用模型什么是muduo网络库什么是epoll muduo网络库服务器编程 网络服务器编程常用模型 【方案1】 &#xff1a; accept read/write 不是并发服务器 【方案2】 &#xff1a; accept fork - process-pre-connection 适合并发连接数不大&#xff0c;计算任…

Yolov5 export.py实现onnx模型的导出

查了很多资料&#xff0c;很多用python代码写的&#xff0c;只需要这个库那个库的&#xff0c;最后都没成功。 不如直接使用Yolov5里面的 export.py实现模型的转换。 一&#xff1a;安装依赖 因为yolov5里面的requirments.txt是将这些转换模型的都注释掉了 所以需要解除注释…

人工智能论文GPT-3(2):2020.5 Language Models are Few-Shot Learners;微调;少样本Few-Shot (FS)

2 方法Approach 我们的基本预训练方法&#xff0c;包括模型、数据和训练&#xff0c;与GPT-2中描述的过程相似&#xff0c;只是模型规模、数据集规模和多样性&#xff0c;以及训练时长有所扩大&#xff0c;相对简单直接。 我们使用的上下文学习也与GPT-2相似&#xff0c;但在…

Kafka 3.x.x 入门到精通(03)——对标尚硅谷Kafka教程

Kafka 3.x.x 入门到精通&#xff08;03&#xff09;——对标尚硅谷Kafka教程 2. Kafka基础2.1 集群部署2.2 集群启动2.3 创建主题2.4 生产消息2.4.1 生产消息的基本步骤2.4.2 生产消息的基本代码2.4.3 发送消息2.4.3.1 拦截器2.4.3.1.1 增加拦截器类2.4.3.1.2 配置拦截器 2.4.3…

.NET 邮件发送 SMTP邮件发送

SMTP&#xff08;Simple Mail Transfer Protocol&#xff09;是用于电子邮件传输的规则集&#xff0c;可以从邮件客户端向接收电子邮件服务器发送、中继或转发邮件。发件人可使用SMTP 服务器来执行发送电子邮件的过程。SMTP服务器则是按照这些规则中转电子邮件的服务器。 IMAP…

【Qt QML】TabBar的用法

Qt Quick中的TabBar提供了一个基于选项卡的导航模型。TabBar由TabButton控件填充&#xff0c;并且可以与任何提供currentIndex属性的布局或容器控件一起使用&#xff0c;例如StackLayout或SwipeView。 import QtQuick import QtQuick.Controls import QtQuick.LayoutsWindow …

企业微信hook接口协议,ipad协议http,发送大视频文件

发送大视频文件 参数名必选类型说明uuid是String每个实例的唯一标识&#xff0c;根据uuid操作具体企业微信send_userid是long要发送的人或群idisRoom是bool是否是群消息 请求示例 {"uuid":"1688853790xxx", //uuid 默认随机生成如果初始化传了id则用初始…

潜藏10年的恶意软件被发现;利用漏洞在K8S上挖矿;AWS、Google和Azure 出现信息泄露危机 | 安全周报0419

关键词&#xff1a;OfflRouter、恶意软件、VBA宏病毒、机密文件、可执行文件、iOS间谍软件、LightSpy、F_Warehouse、Azure CLI、AWS CLI、Google Cloud CLI 1. 近十年来&#xff0c;OfflRouter恶意软件在乌克兰一直未被发现 自2015年以来&#xff0c;部分乌克兰政府网络一直…

【学习】如何高效地进行集成测试

在软件开发的过程中&#xff0c;测试环节至关重要。而在这其中&#xff0c;集成测试更是保证软件质量的关键步骤之一。本文将探讨如何高效地进行集成测试&#xff0c;以确保软件的稳定性和可靠性。 一、什么是集成测试 集成测试是指在单元测试的基础上&#xff0c;将模块按照设…

力扣刷题学习(跟随视频学着刷)

使用入门 视频链接 【手把手带你刷Leetcode力扣&#xff5c;各个击破数据结构和算法&#xff5c;大厂面试必备技能【已完结】-哔哩哔哩】 https://b23.tv/vIcRT61 时空复杂度 时间&#xff1a; 空间&#xff1a;主要有O(1)和O(n)两种&#xff0c;只用计算开辟的内存&#xff…