金融风控信用评分卡建模(Kaggle give me credit数据集)

1 数据预处理数据

数据来源于Kaggle的Give Me Some Credit,包括25万条个人财务情况的样本数据

1.1 导包读数据

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestRegressor
import seaborn as sns
from scipy import stats
import copy%matplotlib inline

读数据

# 读取数据 
train_data = pd.read_csv('cs-training.csv')# 选择除了第一列以外的所有列 
train_data = train_data.iloc[:,1:]# 查看数据的基本信息
train_data.info()

1.2 缺失值处理

查看数据缺失率

# 计算每列的缺失值数量  
missing_values = train_data.isnull().sum()  # 计算每列的缺失率  
missing_rate = (missing_values / len(train_data)) * 100  # 输出缺失率  
print(missing_rate)

 月收入和家属人数两个变量的缺失值占比分别为19.82%、2.62%

缺失较多的月收入,根据变量之间的相关关系,采用随机森林法填补缺失值

缺失较少的NumberOfDependts,对总体模型不会造成太大影响,直接删除缺失样本

# 假设已经按照需求重新排列了列  
mData = train_data.iloc[:,[5,0,1,2,3,4,6,7,8,9]]  # 根据MonthlyIncome列是否有缺失值分割数据  
train_known = mData[mData.MonthlyIncome.notnull()]  
train_unknown = mData[mData.MonthlyIncome.isnull()]  # 使用Pandas的iloc方法来提取特征和目标变量  
# 注意:iloc是基于整数位置的,所以这里的0和1对应重新排列后的列位置  
train_X_known = train_known.iloc[:, 1:]  # 特征,从第二列开始到最后一列  
train_y_known = train_known.iloc[:, 0]   # 目标变量,第一列  # 训练随机森林回归模型  
rfr = RandomForestRegressor(random_state=0, n_estimators=200, max_depth=3, n_jobs=-1)  
rfr.fit(train_X_known, train_y_known)  # 使用模型预测train_unknown中的Missing MonthlyIncome值  
train_X_unknown = train_unknown.iloc[:, 1:]  # 特征,从第二列开始到最后一列  
predicted_y = rfr.predict(train_X_unknown).round(0)  # 将预测值填充回原DataFrame的相应位置  
train_data.loc[train_unknown.index, 'MonthlyIncome'] = predicted_y  # 删除含有缺失值的行  
train_data = train_data.dropna()  # 删除重复的行  
train_data = train_data.drop_duplicates()

1.3 处理异常值

异常值通常用箱型图来判断

# 处理异常值
# 选择特定的列来绘制箱线图
train_box = train_data.iloc[:,[3,7,9]]# 创建一个新的图形
plt.figure(figsize=(10, 5))  # 可以调整图形大小以适应您的需要# 绘制箱线图
train_box.boxplot()# 设置图形标题和坐标轴标签(如果需要)
plt.title('Box Plot of Selected Columns')
plt.ylabel('Values')# 显示图形
plt.show()

查看全部列

train_box = train_data.iloc[:, :]

 删除变量NumberOfTime30-59DaysPastDueNotWorse、NurmberOfTimes90DaysLate、NumberOfTime60-89DaysPastDueNotWorse的异常值,剔除其中一个变量的异常值,其他变量的异常值也会相应被剔除。

 客户的年龄为0时,通常认为该值为异常值,直接剔除。

# 舍弃age为0
train_data = train_data[train_data['NumberOfTime30-59DaysPastDueNotWorse']<90]
train_data = train_data[train_data.age>0]
#使好客户为1,违约客户为0
train_data['SeriousDlqin2yrs'] = 1-train_data['SeriousDlqin2yrs'] 

1.4 数据切分

为了验证模型性能,将数据切分化为训练集和测试集,测试集取原数据的30%。

from sklearn.model_selection import train_test_split  # 假设 train_data 是一个 Pandas DataFrame,将其分为特征和目标变量  
y = train_data.iloc[:, 0]  # 目标变量,假设在第一列  
X = train_data.iloc[:, 1:]  # 特征变量,从第二列到最后一列  # 使用 train_test_split 来分割数据为训练集和测试集  
train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.3, random_state=0)  # 使用 Pandas 的 concat 函数将训练集和测试集的目标变量和特征变量合并回 DataFrame  
ntrain_data = pd.concat([pd.DataFrame(train_y), train_X], axis=1)  
ntest_data = pd.concat([pd.DataFrame(test_y), test_X], axis=1)  # 注意:将 train_y 和 test_y 转换为 DataFrame 是为了确保它们与 train_X 和 test_X 的索引对齐  
# 如果 train_y 和 test_y 是 Series,并且它们的索引与 train_X 和 test_X 的索引一致,那么可以直接合并

2 探索性分析

在建立模型之前,一般会对现有的数据进行 探索性数据分析(Exploratory Data Analysis) 。 EDA是指对已有的数据(特别是调查或观察得来的原始数据)在尽量少的先验假定下进行探索。

常用的探索性数据分析方法有:直方图、散点图和箱线图等。

年龄的分布大致呈正态分布,符合统计分析假设。

age = ntrain_data['age']
sns.distplot(age)

月收入的分布也大致呈正态分布。

mi = ntrain_data[['MonthlyIncome']]
sns.distplot(mi)

3 变量选择

3.1 分箱处理

3.1.1 连续变量最优分段

定义自动分箱函数,单调分箱,是基于IV(Information Value)和WOE(Weight of Evidence)两个指标来进行的。

WOE是一种衡量某个分箱中好坏样本分布相对于总样本分布的指标。它通过对数转换来量化这种分布差异,使得WOE值能够直观地反映该分箱对于区分好坏样本的能力

IV则是基于WOE计算得出的一个汇总指标,用于衡量整个特征(经过分箱处理后)对于预测目标变量的信息量。IV值越高,说明该特征对于预测目标变量的贡献越大。

在单调分箱的过程中,会同时考虑WOE和IV两个指标。一方面,要确保分箱后的WOE值呈现单调性,这有助于保证模型的可解释性和单调性约束;另一方面,也要关注IV值,以评估分箱操作是否有效地提高了特征的预测能力。

def mono_bin(Y, X, n=10):r = 0good=Y.sum()bad=Y.count()-goodwhile np.abs(r) < 1: d1 = pd.DataFrame({"X": X, "Y": Y, "Bucket": pd.qcut(X, n)})d2 = d1.groupby('Bucket', as_index = True)r, p = stats.spearmanr(d2.mean().X, d2.mean().Y)  n = n - 1d3 = pd.DataFrame(d2.X.min(), columns = ['min'])d3['min']=d2.min().Xd3['max'] = d2.max().Xd3['sum'] = d2.sum().Yd3['total'] = d2.count().Yd3['rate'] = d2.mean().Yd3['woe']=np.log((d3['rate']/good)/((1-d3['rate'])/bad))d3['goodattribute']=d3['sum']/goodd3['badattribute']=(d3['total']-d3['sum'])/badiv=((d3['goodattribute']-d3['badattribute'])*d3['woe']).sum()d4 = (d3.sort_values(by='min')).reset_index(drop=True)# d4 = (d3.sort_index(by = 'min')).reset_index(drop=True)woe=list(d4['woe'].round(3))cut=[]cut.append(float('-inf'))for i in range(1,n+1):qua=X.quantile(i/(n+1))cut.append(round(qua,4))cut.append(float('inf'))return d4,iv,cut,woe

对于 RevolvingUtilizationOfUnsecuredLines、age、DebtRatio和MonthlyIncome使用这种方式进行分类。连续变量离散化,最优分段。

x1_d,x1_iv,x1_cut,x1_woe = mono_bin(train_y,train_X.RevolvingUtilizationOfUnsecuredLines,n=10)
x2_d,x2_iv,x2_cut,x2_woe = mono_bin(train_y,train_X.age,n=10)
x4_d,x4_iv,x4_cut,x4_woe = mono_bin(train_y,train_X.DebtRatio,n=20)
x5_d,x5_iv,x5_cut,x5_woe = mono_bin(train_y,train_X.MonthlyIncome,n=10)

查看分箱结果

# 打印RevolvingUtilizationOfUnsecuredLines的分箱结果  
print("RevolvingUtilizationOfUnsecuredLines分箱结果:")  
print("分布:\n", x1_d)  
print("信息价值:", x1_iv)  
print("分箱边界:", x1_cut)  
print("权重证据:", x1_woe) 

print("age分箱结果:")
print("分布:\n", x2_d)  
print("信息价值:", x2_iv)  
print("分箱边界:", x2_cut)  
print("权重证据:", x2_woe)

print("MonthlyIncome分箱结果:")
print("分布:\n", x5_d)  
print("信息价值:", x5_iv)  
print("分箱边界:", x5_cut)  
print("权重证据:", x5_woe)

3.1.2 不能最优分箱的变量

其他不能最优分箱的变量使用人工选择的方式进行,自定义分箱,同时计算WOE(Weight of Evidence)和 IV(Information Value)。

pinf = float('inf')  # 正无穷大
ninf = float('-inf') # 负无穷大
cutx3 = [ninf, 0, 1, 3, 5, pinf]
cutx6 = [ninf, 1, 2, 3, 5, pinf]
cutx7 = [ninf, 0, 1, 3, 5, pinf]
cutx8 = [ninf, 0,1,2, 3, pinf]
cutx9 = [ninf, 0, 1, 3, pinf]
cutx10 = [ninf, 0, 1, 2, 3, 5, pinf]

定义计算woe的函数

def woe_value(d1):d2 = d1.groupby('Bucket', as_index = True)good=train_y.sum()bad=train_y.count()-goodd3 = pd.DataFrame(d2.X.min(), columns = ['min'])d3['min']=d2.min().Xd3['max'] = d2.max().Xd3['sum'] = d2.sum().Yd3['total'] = d2.count().Yd3['rate'] = d2.mean().Yd3['woe'] = np.log((d3['rate']/good)/((1-d3['rate'])/bad))d3['goodattribute']=d3['sum']/goodd3['badattribute']=(d3['total']-d3['sum'])/badiv=((d3['goodattribute']-d3['badattribute'])*d3['woe']).sum()d4 = (d3.sort_values(by='min')).reset_index(drop=True)# d4 = (d3.sort_index(by = 'min')).reset_index(drop=True)woe=list(d4['woe'].round(3))return d4,iv,woe

创建一个新的DataFrame d1,根据列X(来自train_X的某个特征)的值将其分为不同的桶(Bucket),并计算每个桶的WOE(Weight of Evidence)值和相关统计信息。

3:NumberOftime30-59DaysPastDueNotNorse

# train_X['NumberOfTime30-59DaysPastDueNotWorse'] 是特征列  
# train_y 是目标列(好坏客户的标签)# 创建一个新的DataFrame,包含特征X和目标Y 
d1 = pd.DataFrame({"X": train_X['NumberOfTime30-59DaysPastDueNotWorse'], "Y": train_y})
# 简单地将X列的值复制到新列Bucket中
d1['Bucket'] = d1['X']
d1_x1 = d1.loc[(d1['Bucket']<=0)]
d1_x1.loc[:,'Bucket']="(-inf,0]"# 根据Bucket列的值创建了不同的子集
# 为每个子集的Bucket列设置了新的字符串值,这些值描述了每个子集的数值范围 
d1_x2 = d1.loc[(d1['Bucket']>0) & (d1['Bucket']<= 1)]
d1_x2.loc[:,'Bucket'] = "(0,1]"d1_x3 = d1.loc[(d1['Bucket']>1) & (d1['Bucket']<= 3)]
d1_x3.loc[:,'Bucket'] = "(1,3]"d1_x4 = d1.loc[(d1['Bucket']>3) & (d1['Bucket']<= 5)]
d1_x4.loc[:,'Bucket'] = "(3,5]"d1_x5 = d1.loc[(d1['Bucket']>5)]
d1_x5.loc[:,'Bucket']="(5,+inf)"
# 合并所有子集,将所有子集合并回一个DataFrame
d1 = pd.concat([d1_x1,d1_x2,d1_x3,d1_x4,d1_x5])# 调用了woe_value函数,并传入了合并后的DataFrame d1。
# 返回每个桶的WOE值(x3_woe)、信息价值(IV,x3_iv)和其他描述性统计信息(x3_d) 
x3_d,x3_iv,x3_woe= woe_value(d1)# 定义桶的边界
# 定义了一个列表,它描述了Bucket列的数值范围边界。这些边界与前面为子集设置的字符串值相对应
x3_cut = [float('-inf'),0,1,3,5,float('+inf')]

6:NumberOfOpenCreditLinesAndLoans

d1 = pd.DataFrame({"X": train_X['NumberOfOpenCreditLinesAndLoans'], "Y": train_y})
d1['Bucket'] = d1['X']
d1_x1 = d1.loc[(d1['Bucket']<=0)]
d1_x1.loc[:,'Bucket']="(-inf,0]"d1_x2 = d1.loc[(d1['Bucket']>0) & (d1['Bucket']<= 1)]
d1_x2.loc[:,'Bucket'] = "(0,1]"d1_x3 = d1.loc[(d1['Bucket']>1) & (d1['Bucket']<= 3)]
d1_x3.loc[:,'Bucket'] = "(1,3]"d1_x4 = d1.loc[(d1['Bucket']>3) & (d1['Bucket']<= 5)]
d1_x4.loc[:,'Bucket'] = "(3,5]"d1_x5 = d1.loc[(d1['Bucket']>5)]
d1_x5.loc[:,'Bucket']="(5,+inf)"
d1 = pd.concat([d1_x1,d1_x2,d1_x3,d1_x4,d1_x5])x6_d,x6_iv,x6_woe= woe_value(d1)
x6_cut = [float('-inf'),0,1,3,5,float('+inf')]

7:NumberOfTimes90DaysLate

8:NumberRealEstateLoansOrLines

9:NumberOfTime60-89DaysPastDueNotWorse

10:NumberOfDependents

3.1.3 检查变量之间相关性

corr = train_data.corr()
xticks = ['x0','x1','x2','x3','x4','x5','x6','x7','x8','x9','x10']
yticks = list(corr.index)
fig = plt.figure()
ax1 = fig.add_subplot(1, 1, 1)
sns.heatmap(corr, annot=True, cmap='rainbow', ax=ax1, annot_kws={'size': 5,  'color': 'blue'})
ax1.set_xticklabels(xticks, rotation=0, fontsize=10)
ax1.set_yticklabels(yticks, rotation=0, fontsize=10)
plt.show()

可以看到 NumberOfTime30-59DaysPastDueNotWorse, NumberOfOpenCreditLinesAndLoans和NumberOfTime60-89DaysPastDueNotWorse这三个特征对于所要预测的值有较强的相关性。

3.2 查看各变量IV值

根据各变量的IV值来选择对数据处理有好效果的变量

# 查看各变量IV值
informationValue = []
informationValue.append(x1_iv)
informationValue.append(x2_iv)
informationValue.append(x3_iv)
informationValue.append(x4_iv)
informationValue.append(x5_iv)
informationValue.append(x6_iv)
informationValue.append(x7_iv)
informationValue.append(x8_iv)
informationValue.append(x9_iv)
informationValue.append(x10_iv)
informationValueindex=['x1','x2','x3','x4','x5','x6','x7','x8','x9','x10']
index_num = range(len(index))
ax=plt.bar(index_num,informationValue,tick_label=index)
plt.show()

通过IV值判断变量预测能力的标准是:

< 0.02: unpredictive

0.02 to 0.1: weak

0.1 to 0.3: medium

0.3 to 0.5: strong

> 0.5: suspicious

可以看到,对于X4,X5,X6,X8,以及X10而言,IV值都比较低,因此可以舍弃这些预测能力较差的特征。

查看分箱结果

4 模型分析

4.1 WOE转换

将所有的需要的特征woe化,并将不需要的特征舍弃,仅保留WOE转码后的变量

def trans_woe(var,var_name,x_woe,x_cut):woe_name = var_name + '_woe'for i in range(len(x_woe)):if i == 0:var.loc[(var[var_name]<=x_cut[i+1]),woe_name] = x_woe[i]elif (i>0) and (i<= len(x_woe)-2):var.loc[((var[var_name]>x_cut[i])&(var[var_name]<=x_cut[i+1])),woe_name] = x_woe[i]else:var.loc[(var[var_name]>x_cut[len(x_woe)-1]),woe_name] = x_woe[len(x_woe)-1]return varx1_name = 'RevolvingUtilizationOfUnsecuredLines'
x2_name = 'age'
x3_name = 'NumberOfTime30-59DaysPastDueNotWorse'
x7_name = 'NumberOfTimes90DaysLate'
x9_name = 'NumberOfTime60-89DaysPastDueNotWorse'train_X = trans_woe(train_X,x1_name,x1_woe,x1_cut)
train_X = trans_woe(train_X,x2_name,x2_woe,x2_cut)
train_X = trans_woe(train_X,x3_name,x3_woe,x3_cut)
train_X = trans_woe(train_X,x7_name,x7_woe,x7_cut)
train_X = trans_woe(train_X,x9_name,x9_woe,x9_cut)

查看 train_X DataFrame 的最后五列

train_X = train_X.iloc[:,-5:]
print(train_X)

4.2 模型建立

调用STATSMODEL包来建立逻辑回归模型

# 调用STATSMODEL包来建立逻辑回归模型
import statsmodels.api as sm# 添加常数项。逻辑回归模型需要一个常数项(通常称为截距)来估计回归方程
X1 = sm.add_constant(train_X)# 使用train_y(训练数据的标签)和X1(带有常数项的特征矩阵)来创建一个逻辑回归模型实例
logit = sm.Logit(train_y,X1)# 拟合模型
# fit()方法执行了最大似然估计来估计模型的参数(包括截距和系数)
result = logit.fit()# 打印出模型的摘要,包括每个系数的估计值、标准误差、z值、p值以及模型的R-squared值、对数似然值等信息
print(result.summary())

 记住这个coe每个系数的估计值,后面要用到

4.2 模型检验

模型建立后,导入测试集的数据,画出ROC曲线判断模型的准确性

4.2.1 对测试集进行woe转化

test_X = trans_woe(test_X,x1_name,x1_woe,x1_cut)
test_X = trans_woe(test_X,x2_name,x2_woe,x2_cut)
test_X = trans_woe(test_X,x3_name,x3_woe,x3_cut)
test_X = trans_woe(test_X,x7_name,x7_woe,x7_cut)
test_X = trans_woe(test_X,x9_name,x9_woe,x9_cut)test_X = test_X.iloc[:,-5:]
print(test_X)

4.2.2 拟合模型,画出ROC曲线得到AUC值

通过ROC曲线和AUC值来评估模型的似合能力

sklearn.metrics自动计算ROC和AUC

# 拟合模型,画ROC曲线,得AUC值
from sklearn import metrics
X3 = sm.add_constant(test_X)
resu = result.predict(X3)
fpr, tpr, threshold = metrics.roc_curve(test_y, resu)
rocauc = metrics.auc(fpr, tpr)
plt.plot(fpr, tpr, 'b', label='AUC = %0.2f' % rocauc)
plt.legend(loc='lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('TPR')
plt.xlabel('FPR')
plt.show()

可以看到,AUC=0.85,是可以接受的。

5 建立评分卡

完成了建模相关的工作,并用ROC曲线验证了模型的预测能力

将Logistic模型转换为标准评分卡的形式

5.1 评分标准

依据资料:

a=log(p_good/P_bad)

Score = offset + factor * log(odds)

在建立标准评分卡之前,需要选取几个评分卡参数:基础分值、 PDO(比率翻倍的分值)和好坏比。 这里,取600分为基础分值,PDO为20 (每高20分好坏比翻一倍),好坏比取20。

5.2 计算分数

# 定义 p 和 q  
p = 20 / np.log(2)  
q = 600 - 20 * np.log(20) / np.log(2)  # 定义 get_score 函数  
def get_score(coe, woe, factor):  scores = []  for w in woe:  score = round(coe * w * factor, 0)  scores.append(score)  return scores  # 定义 x_coe 列表  
x_coe = [2.6084, 0.6327, 0.5151, 0.5520, 0.5747, 0.4074]  # 计算基础分数 baseScore  
baseScore = round(q + p * x_coe[0], 0) 

x_coe是之前逻辑回归模型得到的系数。

最后BaseScore等于589分。

计算各项分数

x1_score = get_score(x_coe[1], x1_woe, p)
x2_score = get_score(x_coe[2], x2_woe, p)
x3_score = get_score(x_coe[3], x3_woe, p)
x7_score = get_score(x_coe[4], x7_woe, p)
x9_score = get_score(x_coe[5], x9_woe, p)

5.3 建立评分卡

根据前面的分箱结果和得到的分数,建立评分卡

score = [[23.0, 22.0, 5.0, -20.0],
[-8.0, -6.0, -4.0, -3.0, -1.0, 3.0, 7.0, 14.0, 17.0],
[8.0, -14.0, -28.0, -38.0, -43.0],
[6.0, -33.0, -46.0, -53.0, -51.0],
[3.0, -22.0, -32.0, -35.0, -31.0]]

 

5.4 自动计算评分

建立一个函数,使得当输入x1,x2,x3,x7,x9的值时可以返回评分数

cut_t = [x1_cut,x2_cut,x3_cut,x7_cut,x9_cut]
# x为数组,包含x1,x2,x3,x7和x9的取值
def compute_score(x):        tot_score = baseScorecut_d = copy.deepcopy(cut_t)for j in range(len(cut_d)):cut_d[j].append(x[j])cut_d[j].sort()for i in range(len(cut_d[j])):if cut_d[j][i] == x[j]:tot_score = score[j][i-1] +tot_scorereturn tot_score

测试一下

基于python制作的信用评分卡就此完成!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/314191.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pyqt设置标签显示图片并设置大小

pyqt设置标签显示图片并设置大小 标签显示图片效果代码 标签显示图片 使用 QPixmap 加载图片进行图片大小设置把图片对象设置到标签上 效果 代码 from PyQt5.QtWidgets import QApplication, QLabel, QVBoxLayout, QWidget from PyQt5.QtGui import QPixmap import sys from…

【蓝桥杯2025备赛】素数判断:从O(n^2)到O(n)学习之路

素数判断:从O( n 2 n^2 n2)到O(n)学习之路 背景:每一个初学计算机的人肯定避免不了碰到素数&#xff0c;素数是什么&#xff0c;怎么判断&#xff1f; 素数的概念不难理解:素数即质数&#xff0c;指的是在大于1的自然数中&#xff0c;除了1和它本身不再有其他因数的自然数。 …

比 PSD.js 更强的下一代 PSD 解析器,支持 WebAssembly

比 PSD.js 更强的下一代 PSD 解析器&#xff0c;支持 WebAssembly 1.什么是 webtoon/ps webtoon/ps 是 Typescript 中轻量级 Adobe Photoshop .psd/.psb 文件解析器&#xff0c;对 Web 浏览器和 NodeJS 环境提供支持&#xff0c;且做到零依赖。 Fast zero-dependency PSD par…

openWebUI+ollamawindows+不用docker+webLite本地安装

openWebUI & ollama & windows & 不用docker & webLite 本地安装 总结一下安装教程 10核CPU16G内存 两个web框架都可以&#xff0c;先说简单的 ollama-webui-lite(https://github.com/ollama-webui/ollama-webui-lite) 轻量级&#xff0c;只使用nodejs 先装…

【介绍下如何使用CocoaPods】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…

模板(二)

文章目录 模板&#xff08;二&#xff09;1 非类型模板参数2. 模板的特化2.1. 概念2.2 函数模板特化2.3 类模板特化2.3.1 全特化2.3.2 偏特化2.3.3 类模板特化应用示例 3 模板的分离编译3.1 什么是分离编译3.2 模板的分离编译3.3 解决方法 4. 模板总结 模板&#xff08;二&…

20.Nacos集群搭建

模拟Nacos三个节点&#xff0c;同一个ip,启动三个不同的端口&#xff1a; 节点 nacos1, 端口&#xff1a;8845 节点 nacos2, 端口&#xff1a;8846 节点 nacos3, 端口&#xff1a;8847 1.搭建数据库&#xff0c;初始化数据库表结构 这里我们以单点的数据库为例 首先新建一…

vue与Spring boot数据交互例子【简单版】

文章目录 什么是Vue&#xff1f;快速体验Vueaxios是什么&#xff1f;向Springboot后端发送数据接收Springboot后端数据小结 什么是Vue&#xff1f; 官网解释&#xff1a;Vue 是一套用于构建用户界面的渐进式框架。与其它大型框架不同的是&#xff0c;Vue 被设计为可以自底向上…

黑马微服务课程1

目录 一、GateWay 二、服务调用OpenFeign 三、Sentinel 1. 流量控制&#xff08;限流规则&#xff09; 2. 隔离和降级 2.1 FeignClient整合Sentinel 2.2 线程隔离&#xff08;舱壁模式&#xff09; 2.3 熔断降级 3. 授权规则 3.1 授权规则 3.2 自定义异常结果 4. 规…

功能测试前景揭秘:会被淘汰吗?

在当今快速发展的信息时代&#xff0c;软件已经成为我们工作、学习乃至生活中不可或缺的一部分。随着技术的不断进步和应用的广泛普及&#xff0c;软件测试作为保障软件质量和功能实现的关键步骤&#xff0c;其职业发展路径也受到了广泛的关注。特别是针对功能测试这一细分领域…

T1级,生产环境事故—Shell脚本一键备份K8s的YAML文件

大家好&#xff0c;我叫秋意零。 最近对公司进行日常运维工作时&#xff0c;出现了一个 T1 级别事故。导致公司的“酒云网”APP的无法使用。我和我领导一起搞了一个多小时&#xff0c;业务也停了一个多小时。 起因是&#xff1a;我的部门直系领导&#xff0c;叫我**删除一个 …

计算机视觉 CV 八股分享 [自用](更新中......)

目录 一、深度学习中解决过拟合方法 二、深度学习中解决欠拟合方法 三、梯度消失和梯度爆炸 解决梯度消失的方法 解决梯度爆炸的方法 四、神经网络权重初始化方法 五、梯度下降法 六、BatchNorm 七、归一化方法 八、卷积 九、池化 十、激活函数 十一、预训练 十二…

MemFire解决方案-物联网数据平台解决方案

方案背景 随着各种通讯、传感技术发展&#xff0c;数据通讯成本的急剧下降&#xff0c;数以万亿计的智能设备&#xff08;智能手环、智能电表、智能手机、各种传感器设备等&#xff09;接入网络&#xff0c;并源源不断的产生海量的实时数据。这些海量数据的价值挖掘&#xff0…

【算法基础实验】图论-基于DFS的连通性检测

基于DFS的连通性检测 理论基础 在图论中&#xff0c;连通分量是无向图的一个重要概念&#xff0c;特别是在处理图的结构和解析图的组成时。连通分组件表示图中的一个子图&#xff0c;在这个子图中任意两个顶点都是连通的&#xff0c;即存在一条路径可以从一个顶点到达另一个顶…

【Webgl_glslThreejs】搬运分享shader_飘落心形

来源网站 https://www.shadertoy.com/view/4sccWr效果预览 代码演示 将shadertory上的代码转成了threejs可以直接用的代码&#xff0c;引入文件的material&#xff0c;并在创建mesh或已有物体上使用material即可&#xff0c;使用时请注意uv对齐。 import { DoubleSide, Shad…

深度学习从入门到精通—Transformer

1.绪论介绍 1.1 传统的RNN网络 传统的RNN&#xff08;递归神经网络&#xff09;主要存在以下几个问题&#xff1a; 梯度消失和梯度爆炸&#xff1a;这是RNN最主要的问题。由于序列的长距离依赖&#xff0c;当错误通过层传播时&#xff0c;梯度可以变得非常小&#xff08;消失…

(MSFT.O)微软2024财年Q3营收619亿美元

在科技的浩渺宇宙中&#xff0c;一颗璀璨星辰再度闪耀其光芒——(MSFT.O)微软公司于2024财政年度第三季展现出惊人的财务表现&#xff0c;实现总营业收入达到令人咋舌的6190亿美元。这一辉煌成就不仅突显了微软作为全球技术领导者之一的地位&#xff0c;更引发了业界内外对这家…

第十五届蓝桥杯题解-数字接龙

题意&#xff1a;经过所有格子&#xff0c;并且不能进行交叉&#xff0c;走的下一个格子必须是当前格子值1%k&#xff0c;输出路径最小的那一条&#xff08;有8个方向&#xff0c;一会粘图&#xff09; 思路&#xff1a;按照8个方向设置偏移量进行dfs&#xff0c;第一个到达终…

C/C++ 入门(7)string类(STL)

个人主页&#xff1a;仍有未知等待探索-CSDN博客 专题分栏&#xff1a;C 请多多指教&#xff01; 目录 一、标准库中的string 1、了解 2、string类常用接口说明 1、常见的构造函数 2、容量操作 ​编辑 3、访问及遍历操作 4、修改操作 5、非成员函数 二、string类实现 …

LeetCode57. 插入区间

LeetCode57.插入区间 题目思路: 代码 /* 前置知识&#xff1a; vector<vector<int>> a,b; 二维vector数组是可以将二维中的一维vector数组给push_back的&#xff0c; 不是只有单个元素才可以&#xff0c;整个一维的vector数组也可以 b[0] {1,2,3},b[1] {4,5,6}…