Stable Diffusion中的embedding

Stable Diffusion中的embedding

嵌入,也称为文本反转,是在 Stable Diffusion 中控制图像样式的另一种方法。在这篇文章中,我们将学习什么是嵌入,在哪里可以找到它们,以及如何使用它们。

什么是嵌入embedding?

嵌入(Embedding)是一种在机器学习和人工智能领域中常用的技术,特别是在图像生成和风格迁移等任务中。文本反转(Textual Inversion)则是一种特定于图像生成领域的方法,它允许用户在不直接修改预训练模型的情况下,通过定义新的关键字来引入新的样式或对象。

这种方法之所以受到关注,主要是因为它提供了一种高效且灵活的方式来扩展和定制AI模型的能力。尤其是在样本图像数量有限的情况下(例如只有3到5个样本),文本反转能够显著提高模型的适应性和创造力。通过这种方式,模型能够学习并模仿特定的风格或特征,并将其应用到新的图像生成过程中。

文本反转是如何工作的?

文本反转的核心思想是将特定的文本描述与图像特征相关联。这个过程通常包括以下几个步骤:

  1. 样本收集:首先,收集一组具有相似风格或包含特定对象的样本图像。
  2. 文本描述:为每个样本图像创建一个文本描述,这个描述应该捕捉到图像的关键特征或风格。
  3. 嵌入训练:使用这些文本描述和对应的样本图像来训练一个嵌入模型。这个模型将学习如何将文本描述映射到图像特征上。
  4. 应用嵌入:一旦嵌入模型训练完成,就可以将其应用于新的图像生成任务中。当模型接收到一个与训练时相似的文本描述时,它能够生成具有相应特征或风格的图像。

嵌入的优势

嵌入技术的优势在于其灵活性和高效性。通过文本反转,用户可以在不改变原有模型结构的前提下,快速地引入新的风格或对象。这种方法特别适用于以下场景:

  • 快速原型设计:设计师和艺术家可以迅速尝试不同的风格和概念,而无需从头开始训练复杂的模型。
  • 个性化定制:用户可以根据自己的喜好和需求,定制独特的图像风格或对象。
  • 数据稀缺情况:即使在样本数量有限的情况下,也能够有效地训练模型,使其学习到新的样式或特征。

总的来说,嵌入和文本反转为图像生成领域提供了一种创新的方法,使得AI模型更加灵活和易于使用。通过这种方式,我们可以更好地利用现有的AI资源,创造出更加多样化和个性化的视觉内容。

下面转载的原始研究文章中的图表说明了它是如何工作的。

嵌入如何工作

在使用稳定扩散AI模型进行图像生成时,引入新的对象或样式是一个常见的需求。为了实现这一点,文本反转(Textual Inversion)提供了一种有效的方法,允许我们在不修改模型本身的情况下,通过定义新的关键字来实现这一目标。下面是详细的步骤说明:

定义新的关键字

  1. 选择或创建新关键字:首先,你需要为想要添加到模型中的新对象或样式选择或创造一个独特的关键字。这个关键字应该是描述性的,能够清晰地表达你想要引入的新元素。
  2. 标记化:在模型中,所有的文本提示都是通过标记化(Tokenization)过程被转换成数字形式的。这个过程将文本中的每个单词或符号转换成对应的数字标记。对于你定义的新关键字,它也会被转换成一个唯一的数字标记。

生成嵌入向量

  1. 嵌入向量生成:每个标记(包括新关键字的标记)都会被进一步转换为嵌入向量。嵌入向量是高维空间中的点,它能够捕捉和表示文本的语义信息。在这个过程中,新关键字会被赋予一个独特的嵌入向量。
  2. 文本反转过程:文本反转技术的核心在于,它允许我们通过嵌入向量来查找和表示新关键字,而无需更改模型的任何其他部分。这意味着,即使模型在训练时没有直接接触过新关键字,它也能够通过嵌入向量来理解和生成与新关键字相关的图像内容。

应用新关键字

  1. 在提示中使用新关键字:在生成图像时,你可以在文本提示中包含新关键字。由于新关键字已经被标记化并转换成了嵌入向量,模型能够识别并将其作为生成图像的依据。
  2. 生成图像:当模型接收到包含新关键字的提示时,它会查找与该关键字对应的嵌入向量,并使用这个向量来生成图像。这个过程就像是在语言模型中引入了一种新的语言元素,使得模型能够理解和创造出新的概念。

通过这种方式,文本反转为我们提供了一种强大的工具,使得我们能够在不改变模型结构的前提下,灵活地引入新的对象或样式,极大地扩展了图像生成的可能性。这种方法不仅提高了模型的适应性和灵活性,也为艺术家和设计师提供了更多的创作自由。

在哪里可以找到embedding

下载embedding的首选位置是 Civitai

我们在C站的右上角可以有一个filter选项:

image-20240410202950803

在filter中选择model types= embedding就可以找到对应的embedding了。

如何使用embedding

在 AUTOMATIC1111 中使用embedding很容易。

首先,从 Civitai 网站下载好embedding文件。下载下来的embedding文件通常是bin或者pt结尾的。

你需要把这些embedding文件放到Stable diffusion webUI根目录下面的embeddings文件夹,然后重启Stable diffusion webUI即可。

image-20240410203444596

在webUI界面,你可以在Textual Inversion中找到你安装好的embedding。

要使用他,只需要点击对应的embedding, webUI会自动把对应的embedding添加到提示词中去。比如:

a girl,0lg4kury,

这里0lg4kury就是我安装的第一个embedding的名字。点击生成,看看效果:

image-20240410203743127

可以看到人物还是很相似的。

这里我用了多种采样方法来进行最终图片的对比。

调整embedding的强度

之前听过我的prompt文章的朋友应该知道我们可以调整提示词强度的。

因为embedding同样也是提示词的一部分,所以我们也可以用同样的方式来调整embedding的强度。

image-20240410204235359

neg embedding

有了正面的embedding,同样也有负面的embedding,下面是几个常用的负面embedding:

image-20240410204615881image-20240410204630100image-20240410204648089

embedding、dreambooth 和hypernetwork的区别

文本反转(Textual Inversion)、Dreambooth 和超网络 是三种不同的技术,它们都可以用于微调Stable Diffusion模型,但各自有不同的特点和应用场景。

  1. 文本反转(Textual Inversion)
    • 文本反转是一种通过少量样本图像来训练模型的方法,它允许用户定义新的关键字来描述特定的对象或风格。
    • 这种方法不需要更改模型的结构,而是通过嵌入向量来实现新关键字的添加。
    • 嵌入向量存储在相对较小的文件中(通常小于100 kB),这使得它们易于存储和传输。
    • 文本反转适合于快速添加新概念到模型中,但可能不如其他方法那样灵活或强大。
  2. Dreambooth
    • Dreambooth是一种基于深度学习的图像风格转换技术,它使用少量图像来训练模型。
    • 它特别适合于生成高质量艺术作品,而无需用户具备专业艺术技能。
    • Dreambooth通过微调模型的权重来实现特定主题的生成,这可能导致模型过度拟合训练数据。
    • 它生成的模型文件相对较大(2-4GB),并且在使用时需要加载模型。
  3. 超网络(Hypernetwork)
    • 超网络是一种使用神经网络来生成模型参数的方法。
    • 它通过在原有模型的基础上添加一个附加网络来实现微调,这个附加网络可以学习新的生成特征。
    • 超网络生成的模型文件大小介于文本反转和Dreambooth之间(大约几十MB),这使得它在存储和传输方面比较平衡。
    • 超网络适合于生成近似内容图像,如果训练数据与目标风格高度相关,那么超网络是一个不错的选择。

总的来说,文本反转、Dreambooth和超网络各有优势和适用场景。文本反转适合快速添加新概念,Dreambooth适合个性化的高质量图像生成,而超网络则提供了一种在保留原有模型结构的同时进行微调的中间方案。用户可以根据自己的需求和资源限制来选择最合适的方法。

点我查看更多精彩内容:www.flydean.com

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/315370.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据分析:生存分析原理和应用实例

介绍 生存分析的目的是分析某个时间点的“生存概率”是多少。基于这样的研究目的,需要提供生存数据,它是一种由不同的开始时间和结束时间组成的事件-时间的数据,比如在癌症研究领域,研究手术到死亡的过程、治疗到疾病进展等等。 在开展生存分析前,需要了解什么是删失(c…

知网怎么查重 知网查重的详细步骤

知网查重八个步骤:1. 访问官网,注册账号。2. 上传待查文档。3. 选择查重规则。4. 选择相似来源库。5. 提交查重任务。6. 等待查重结果。7. 获取查重报告。8. 下载查重报告。 知网查重的详细步骤 第一步:进入知网查重系统 打开浏览器&#x…

FPGA秋招-笔记整理(1)

一、关键路径 关键路径通常是指同步逻辑电路中,组合逻辑时延最大的路径(这里我认为还需要加上布线的延迟),也就是说关键路径是对设计性能起决定性影响的时序路径。也就是静态时序报告中WNS(Worst Nagative Slack&…

后端端口也可以直接在浏览器访问

比如在浏览器输入http://localhost:8078/hello/helloword访问的是后端的 RestController RequestMapping("/hello") public class HelloWord {RequestMapping("/helloword")public String helloWord(){return "hello word";} }浏览器将会返回

viewerjs在vue中实现点击图片预览、切换、缩放、拖拽、旋转等功能

1、下载依赖&#xff1a; npm i viewerjs 2、定义html结构 <template> <div><ul class"artBody"><li><img src"picture-1.jpg" alt"Picture 1"></li><li><img src"picture-2.jpg" alt&…

计算机找不到vcruntime140_1.dll,无法继续执行代码快速解决方法

vcruntime140_1.dll是一个重要的Windows操作系统中的动态链接库&#xff08;DLL&#xff09;文件&#xff0c;它是微软Visual C Redistributable软件包的组成部分。以下是该文件的详细介绍&#xff1a; 名称含义&#xff1a;“vcruntime”代表Visual C Runtime&#xff0c;表明…

主播美颜工具与视频美颜SDK:技术革新与实践探索

在直播行业&#xff0c;主播们对于自身形象的呈现越来越注重&#xff0c;而主播美颜工具和视频美颜SDK的问世&#xff0c;为他们提供了更多实现完美自我形象的可能性。接下来&#xff0c;我将为您讲解这些技术的技术革新和实践应用。 一、主播美颜工具&#xff1a;技术原理与特…

通过阿里云OOS实现定时备份redis实例转储到OSS

功能背景 随着企业业务数据的快速增长&#xff0c;Redis 作为高性能的内存数据存储方案&#xff0c;在多种应用场景下承担着重要的角色。为确保数据安全&#xff0c;定时备份成为了不可或缺的一环。Redis 实例定时备份是关键数据库管理任务的一个重要组成部分&#xff0c;它主…

由于找不到msvcr120.dll,无法继续执行代码

在日常编程中&#xff0c;缺少关键的msvcr120.dll文件可能会导致代码无法执行&#xff0c;给我们带来不便。针对缺少msvcr120.dll文件的情况&#xff0c;我们可以采取一些有效的解决方法来解决这一问题。通过下载安装或使用Visual C Redistributable工具安装该msvcr120.dll文件…

数据污染对大型语言模型的潜在影响

大型语言模型&#xff08;LLMs&#xff09;中存在的数据污染是一个重要问题&#xff0c;可能会影响它们在各种任务中的表现。这指的是LLMs的训练数据中包含了来自下游任务的测试数据。解决数据污染问题至关重要&#xff0c;因为它可能导致结果偏倚&#xff0c;并影响LLMs在其他…

STL_List与萃取

List 参考文章: https://blog.csdn.net/weixin_45389639/article/details/121618243 List源码 List中节点的定义&#xff1a; list是双向列表&#xff0c;所以其中节点需要包含指向前一节点和后一节点的指针&#xff0c; data是节点中存储的数据类型 template <class _Tp&g…

华为海思校园招聘-芯片-数字 IC 方向 题目分享——第六套

华为海思校园招聘-芯片-数字 IC 方向 题目分享——第六套 (共9套&#xff0c;有答案和解析&#xff0c;答案非官方&#xff0c;未仔细校正&#xff0c;仅供参考&#xff09; 部分题目分享&#xff0c;完整版获取&#xff08;WX:didadidadidida313&#xff0c;加我备注&#x…

动态获取数据并按顺序组合

当有多个select&#xff0c;且选中后会按顺序组合&#xff1a; 第一列选中&#xff1a; “壹”,“贰” 第二列选中&#xff1a; “a”,“b” 那么组合后的数据为&#xff1a;“壹&#xff0c;a”&#xff0c;“壹&#xff0c;b”&#xff0c;“贰&#xff0c;a”&#xff0c;“…

Docker 的数据管理 端口映射 容器互联 镜像的创建

目录 概念 概念 管理 Docker 容器中数据主要有两种方式&#xff1a;数据卷&#xff08;Data Volumes&#xff09;和数据卷容器&#xff08;DataVolumes Containers&#xff09;。总结&#xff1a;因为容器数据是临时保存的为了安全&#xff0c;就要让数据保持持久化。 1&#…

AI绘画的算法原理:从生成模型到Diffusion

近年来&#xff0c;AI绘画技术引起了广泛关注&#xff0c;让我们深入探讨其背后的技术原理和发展历程。本文将以通俗易懂的方式&#xff0c;介绍AI绘画的核心算法&#xff0c;从生成模型到Diffusion。 1. 计算机如何生成图画&#xff1f; AI绘画的核心在于生成模型&#xff08…

Redis入门到通关之数据结构解析-IntSet

文章目录 概述IntSet升级简易源码总结 欢迎来到 请回答1024 的博客 &#x1f34e;&#x1f34e;&#x1f34e;欢迎来到 请回答1024的博客 关于博主&#xff1a; 我是 请回答1024&#xff0c;一个追求数学与计算的边界、时间与空间的平衡&#xff0c;0与1的延伸的后端开发者。 …

机器学习和深度学习-- 李宏毅(笔记与个人理解)Day22

Day 22 Transformer seqence to seqence 有什么用呢&#xff1f; Encoder how Block work 仔细讲讲Residual 的过程&#xff1f; 重构 Decoder - AutoRegressive Mask 由于是文字接龙&#xff0c;所以无法考虑右边的 info 另一种decoder Encoder to Decoder – Cross Attend…

jsp servlet 学生信息管理系统

一、角色划分 1、超级管理员 2、学生 二、模块展示 1、登录 2、列表页面【超级管理员展示所有用户信息、学生只展示当前登录用户信息】 3、新增 4、编辑 三、数据库【mysql】 四、运行演示 jsp servlet 学生信息管理系统

Spark高可用模式和Spark分布式Yarn环境安装

Spark分布式HA环境安装 图-12 高可用模式原理 因为在目前情况下&#xff0c;集群中只有一个Master&#xff0c;如果master挂掉&#xff0c;便无法对外提供新的服务&#xff0c;显然有单点故障问题&#xff0c;解决方法就是master的ha。 有两种方式解决单点故障&#xff0c;一…

网络通信安全

一、网络通信安全基础 TCP/IP协议简介 TCP/IP体系结构、以太网、Internet地址、端口 TCP/IP协议简介如下&#xff1a;&#xff08;from文心一言&#xff09; TCP/IP&#xff08;Transmission Control Protocol/Internet Protocol&#xff0c;传输控制协议/网际协议&#xff0…