数据结构和算法:贪心

贪心算法

贪心算法是一种常见的解决优化问题的算法,其基本思想是在问题的每个决策阶段,都选择当前看起来最优的选择,即贪心地做出局部最优的决策,以期获得全局最优解。

贪心算法和动态规划都常用于解决优化问题。它们之间存在一些相似之处,比如都依赖最优子结构性质,但工作原理不同:
1.动态规划会根据之前阶段的所有决策来考虑当前决策,并使用过去子问题的解来构建当前子问题的解。
2.贪心算法不会考虑过去的决策,而是一路向前地进行贪心选择,不断缩小问题范围,直至问题被解决。

例题:给定 𝑛 种硬币,第 𝑖 种硬币的面值为 𝑐𝑜𝑖𝑛𝑠[𝑖 − 1] ,目标金额为 𝑎𝑚𝑡 ,每种硬币可以重复选取,问能够凑出目标金额的最少硬币数量。如果无法凑出目标金额,则返回 −1 。

采取的贪心策略如图所示。给定目标金额,贪心地选择不大于且最接近它的硬币,不断循环该步骤,直至凑出目标金额为止。
在这里插入图片描述

/* 零钱兑换:贪心 */
int coinChangeGreedy(vector<int> &coins, int amt) {// 假设 coins 列表有序int i = coins.size() - 1;int count = 0;// 循环进行贪心选择,直到无剩余金额while (amt > 0) {// 找到小于且最接近剩余金额的硬币while (i > 0 && coins[i] > amt) {i--;}// 选择 coins[i]amt -= coins[i];count++;}// 若未找到可行方案,则返回 -1return amt == 0 ? count : -1;
}

贪心算法的优点与局限性

贪心算法不仅操作直接、实现简单,而且通常效率也很高。在以上代码中,记硬币最小面值为 min(𝑐𝑜𝑖𝑛𝑠) ,则贪心选择最多循环 𝑎𝑚𝑡/ min(𝑐𝑜𝑖𝑛𝑠) 次,时间复杂度为 𝑂(𝑎𝑚𝑡/ min(𝑐𝑜𝑖𝑛𝑠)) 。这比动态规划解法的时间复杂度 𝑂(𝑛 × 𝑎𝑚𝑡) 小了一个数量级。

然而,对于某些硬币面值组合,贪心算法并不能找到最优解。
正例 𝑐𝑜𝑖𝑛𝑠 = [1, 5, 10, 20, 50, 100]:在该硬币组合下,给定任意 𝑎𝑚𝑡 ,贪心算法都可以找到最优解。
反例 𝑐𝑜𝑖𝑛𝑠 = [1, 20, 50]:假设 𝑎𝑚𝑡 = 60 ,贪心算法只能找到 50 + 1 × 10 的兑换组合,共计 11 枚硬币,但动态规划可以找到最优解 20 + 20 + 20 ,仅需 3 枚硬币。
反例 𝑐𝑜𝑖𝑛𝑠 = [1, 49, 50]:假设 𝑎𝑚𝑡 = 98 ,贪心算法只能找到 50 + 1 × 48 的兑换组合,共计 49 枚硬币,但动态规划可以找到最优解 49 + 49 ,仅需 2 枚硬币。
在这里插入图片描述
也就是说,对于零钱兑换问题,贪心算法无法保证找到全局最优解,并且有可能找到非常差的解。它更适合用动态规划解决。
一般情况下,贪心算法的适用情况分以下两种:
1.可以保证找到最优解:贪心算法在这种情况下往往是最优选择,因为它往往比回溯、动态规划更高效。
2.可以找到近似最优解:贪心算法在这种情况下也是可用的。对于很多复杂问题来说,寻找全局最优解非常困难,能以较高效率找到次优解也是非常不错的。

贪心算法特性

相较于动态规划,贪心算法的使用条件更加苛刻,其主要关注问题的两个性质。
贪心选择性质:只有当局部最优选择始终可以导致全局最优解时,贪心算法才能保证得到最优解。
最优子结构:原问题的最优解包含子问题的最优解。

贪心算法解题步骤

贪心问题的解决流程大体可分为以下三步:
1.问题分析:梳理与理解问题特性,包括状态定义、优化目标和约束条件等。这一步在回溯和动态规划中都有涉及。
2.确定贪心策略:确定如何在每一步中做出贪心选择。这个策略能够在每一步减小问题的规模,并最终解决整个问题。
3.正确性证明:通常需要证明问题具有贪心选择性质和最优子结构。这个步骤可能需要用到数学证明,例如归纳法或反证法等。

确定贪心策略是求解问题的核心步骤,但实施起来可能并不容易,主要有以下原因:
1.不同问题的贪心策略的差异较大。
2.某些贪心策略具有较强的迷惑性。

贪心算法典型例题

‧ 硬币找零问题:在某些硬币组合下,贪心算法总是可以得到最优解。
‧ 区间调度问题:假设你有一些任务,每个任务在一段时间内进行,你的目标是完成尽可能多的任务。如果每次都选择结束时间最早的任务,那么贪心算法就可以得到最优解。
‧ 分数背包问题:给定一组物品和一个载重量,你的目标是选择一组物品,使得总重量不超过载重量,且总价值最大。如果每次都选择性价比最高(价值 / 重量)的物品,那么贪心算法在一些情况下可以得到最优解。
‧ 股票买卖问题:给定一组股票的历史价格,你可以进行多次买卖,但如果你已经持有股票,那么在卖出之前不能再买,目标是获取最大利润。
‧ 霍夫曼编码:霍夫曼编码是一种用于无损数据压缩的贪心算法。通过构建霍夫曼树,每次选择出现频率最低的两个节点合并,最后得到的霍夫曼树的带权路径长度(编码长度)最小。
‧ Dijkstra 算法:它是一种解决给定源顶点到其余各顶点的最短路径问题的贪心算法。

分数背包问题

例题:给定 𝑛 个物品,第 𝑖 个物品的重量为 𝑤𝑔𝑡[𝑖 − 1]、价值为 𝑣𝑎𝑙[𝑖 − 1] ,和一个容量为 𝑐𝑎𝑝 的背包。每个物品只能选择一次,但可以选择物品的一部分,价值根据选择的重量比例计算,问在限定背包容量下背包中物品的最大价值。
在这里插入图片描述
不同点在于,本题允许只选择物品的一部分。如图所示,我们可以对物品任意地进行切分,并按照重量比例来计算相应价值。
1.对于物品 𝑖 ,它在单位重量下的价值为 𝑣𝑎𝑙[𝑖 − 1]/𝑤𝑔𝑡[𝑖 − 1] ,简称单位价值。
2.假设放入一部分物品 𝑖 ,重量为 𝑤 ,则背包增加的价值为 𝑤 × 𝑣𝑎𝑙[𝑖 − 1]/𝑤𝑔𝑡[𝑖 − 1] 。
在这里插入图片描述

1.贪心策略确定

最大化背包内物品总价值,本质上是最大化单位重量下的物品价值。由此便可推理出下图所示的贪心策略。
1.将物品按照单位价值从高到低进行排序。
2.遍历所有物品,每轮贪心地选择单位价值最高的物品。
3.若剩余背包容量不足,则使用当前物品的一部分填满背包。
在这里插入图片描述

2.代码实现

建立了一个物品类 Item ,以便将物品按照单位价值进行排序。循环进行贪心选择,当背包已满时跳出并返回解:

/*** File: fractional_knapsack.cpp* Created Time: 2023-07-20* Author: Krahets (krahets@163.com)*/#include "../utils/common.hpp"/* 物品 */
class Item {public:int w; // 物品重量int v; // 物品价值Item(int w, int v) : w(w), v(v) {}
};/* 分数背包:贪心 */
double fractionalKnapsack(vector<int> &wgt, vector<int> &val, int cap) {// 创建物品列表,包含两个属性:重量、价值vector<Item> items;for (int i = 0; i < wgt.size(); i++) {items.push_back(Item(wgt[i], val[i]));}// 按照单位价值 item.v / item.w 从高到低进行排序sort(items.begin(), items.end(), [](Item &a, Item &b) { return (double)a.v / a.w > (double)b.v / b.w; });// 循环贪心选择double res = 0;for (auto &item : items) {if (item.w <= cap) {// 若剩余容量充足,则将当前物品整个装进背包res += item.v;cap -= item.w;} else {// 若剩余容量不足,则将当前物品的一部分装进背包res += (double)item.v / item.w * cap;// 已无剩余容量,因此跳出循环break;}}return res;
}/* Driver Code */
int main() {vector<int> wgt = {10, 20, 30, 40, 50};vector<int> val = {50, 120, 150, 210, 240};int cap = 50;// 贪心算法double res = fractionalKnapsack(wgt, val, cap);cout << "不超过背包容量的最大物品价值为 " << res << endl;return 0;
}

除排序之外,在最差情况下,需要遍历整个物品列表,因此时间复杂度为 𝑂(𝑛) ,其中 𝑛 为物品数量。
由于初始化了一个 Item 对象列表,因此空间复杂度为 𝑂(𝑛) 。

3. 正确性证明

采用反证法。假设物品 𝑥 是单位价值最高的物品,使用某算法求得最大价值为 res ,但该解中不包含物品 𝑥。
现在从背包中拿出单位重量的任意物品,并替换为单位重量的物品 𝑥 。由于物品 𝑥 的单位价值最高,因此替换后的总价值一定大于 res 。这与 res 是最优解矛盾,说明最优解中必须包含物品 𝑥 。
对于该解中的其他物品,我们也可以构建出上述矛盾。总而言之,单位价值更大的物品总是更优选择,这说明贪心策略是有效的。

如果将物品重量和物品单位价值分别看作一张二维图表的横轴和纵轴,则分数背包问题可转化为“求在有限横轴区间下围成的最大面积”。
在这里插入图片描述

最大容量问题

例题:输入一个数组 ℎ𝑡 ,其中的每个元素代表一个垂直隔板的高度。数组中的任意两个隔板,以及它们之间的空间可以组成一个容器。
容器的容量等于高度和宽度的乘积(面积),其中高度由较短的隔板决定,宽度是两个隔板的数组索引之差。请在数组中选择两个隔板,使得组成的容器的容量最大,返回最大容量。示例如图所示。
在这里插入图片描述
容器由任意两个隔板围成,因此本题的状态为两个隔板的索引,记为 [𝑖, 𝑗] 。根据题意,容量等于高度乘以宽度,其中高度由短板决定,宽度是两隔板的数组索引之差。设容量为 𝑐𝑎𝑝[𝑖, 𝑗],则可得计算公式:
在这里插入图片描述
设数组长度为 𝑛 ,两个隔板的组合数量(状态总数)为 C n 2 = n ( n − 1 ) 2 C_n^2 = \frac{n(n-1)}{2} Cn2=2n(n1) 个。最直接地,我们可以穷举所有状态,从而求得最大容量,时间复杂度为 𝑂(𝑛^2) 。

1.贪心策略确定

这道题还有更高效率的解法。如图所示,现选取一个状态 [𝑖, 𝑗] ,其满足索引 𝑖 < 𝑗 且高度 ℎ𝑡[𝑖] < ℎ𝑡[𝑗],即 𝑖 为短板、𝑗 为长板。
在这里插入图片描述
若此时将长板 𝑗 向短板 𝑖 靠近,则容量一定变小。
这是因为在移动长板 𝑗 后,宽度 𝑗 − 𝑖 肯定变小;而高度由短板决定,因此高度只可能不变(𝑖 仍为短板)或变小(移动后的 𝑗 成为短板)。
在这里插入图片描述
反向思考,我们只有向内收缩短板 𝑖 ,才有可能使容量变大。因为虽然宽度一定变小,但高度可能会变大(移动后的短板 𝑖 可能会变长)。
例如在下图中,移动短板后面积变大。
在这里插入图片描述
由此便可推出本题的贪心策略:初始化两指针,使其分列容器两端,每轮向内收缩短板对应的指针,直至两指针相遇。

贪心策略的执行过程:
1.初始状态下,指针 𝑖 和 𝑗 分列数组两端。
2.计算当前状态的容量 𝑐𝑎𝑝[𝑖, 𝑗] ,并更新最大容量。
3.比较板 𝑖 和 板 𝑗 的高度,并将短板向内移动一格。
4.循环执行第 2. 步和第 3. 步,直至 𝑖 和 𝑗 相遇时结束。

2.代码实现

代码循环最多 𝑛 轮,因此时间复杂度为 𝑂(𝑛) 。
变量 𝑖、𝑗、𝑟𝑒𝑠 使用常数大小的额外空间,因此空间复杂度为 𝑂(1) 。

/*** File: max_capacity.cpp* Created Time: 2023-07-21* Author: Krahets (krahets@163.com)*/#include "../utils/common.hpp"/* 最大容量:贪心 */
int maxCapacity(vector<int> &ht) {// 初始化 i, j,使其分列数组两端int i = 0, j = ht.size() - 1;// 初始最大容量为 0int res = 0;// 循环贪心选择,直至两板相遇while (i < j) {// 更新最大容量int cap = min(ht[i], ht[j]) * (j - i);res = max(res, cap);// 向内移动短板if (ht[i] < ht[j]) {i++;} else {j--;}}return res;
}/* Driver Code */
int main() {vector<int> ht = {3, 8, 5, 2, 7, 7, 3, 4};// 贪心算法int res = maxCapacity(ht);cout << "最大容量为 " << res << endl;return 0;
}

3.正确性证明

之所以贪心比穷举更快,是因为每轮的贪心选择都会“跳过”一些状态。
比如在状态 𝑐𝑎𝑝[𝑖, 𝑗] 下,𝑖 为短板、𝑗 为长板。若贪心地将短板 𝑖 向内移动一格,会导致下图所示的状态被“跳过”。这意味着之后无法验证这些状态的容量大小。
在这里插入图片描述
在这里插入图片描述

观察发现,这些被跳过的状态实际上就是将长板 𝑗 向内移动的所有状态。前面我们已经证明内移长板一定会导致容量变小。也就是说,被跳过的状态都不可能是最优解,跳过它们不会导致错过最优解。

以上分析说明,移动短板的操作是“安全”的,贪心策略是有效的。

最大切分乘积问题

例题:给定一个正整数 𝑛 ,将其切分为至少两个正整数的和,求切分后所有整数的乘积最大是多少,如图所示。
在这里插入图片描述
假设我们将 𝑛 切分为 𝑚 个整数因子,其中第 𝑖 个因子记为 𝑛_𝑖 ,即
在这里插入图片描述
本题的目标是求得所有整数因子的最大乘积,即
在这里插入图片描述
需要思考的是:切分数量 𝑚 应该多大,每个 𝑛_𝑖 应该是多少?

1.贪心策略确定

根据经验,两个整数的乘积往往比它们的加和更大。假设从 𝑛 中分出一个因子 2 ,则它们的乘积为 2(𝑛 − 2)。我们将该乘积与 𝑛 作比较:
在这里插入图片描述
当 𝑛 ≥ 4 时,切分出一个 2 后乘积会变大,这说明大于等于 4 的整数都应该被切分。
在这里插入图片描述

贪心策略一:如果切分方案中包含 ≥ 4 的因子,那么它就应该被继续切分。最终的切分方案只应出现 1、2、3 这三种因子。

接下来思考哪个因子是最优的。在 1、2、3 这三个因子中,显然 1 是最差的,因为 1 × (𝑛 − 1) < 𝑛 恒成立,即切分出 1 反而会导致乘积减小。
在这里插入图片描述

如图所示,当 𝑛 = 6 时,有 3 × 3 > 2 × 2 × 2 。这意味着切分出 3 比切分出 2 更优。

贪心策略二:在切分方案中,最多只应存在两个 2 。因为三个 2 总是可以替换为两个 3 ,从而获得更大的乘积。

综上所述,可推理出以下贪心策略:
1.输入整数 𝑛 ,从其不断地切分出因子 3 ,直至余数为 0、1、2 。
2.当余数为 0 时,代表 𝑛 是 3 的倍数,因此不做任何处理。
3.当余数为 2 时,不继续划分,保留。
4.当余数为 1 时,由于 2 × 2 > 1 × 3 ,因此应将最后一个 3 替换为 2 。

2.代码实现

如图所示,无须通过循环来切分整数,而可以利用向下整除运算得到 3 的个数 𝑎 ,用取模运算得到余数 𝑏 ,此时有:
𝑛 = 3𝑎 + 𝑏
在这里插入图片描述

对于 𝑛 ≤ 3 的边界情况,必须拆分出一个 1 ,乘积为 1 × (𝑛 − 1) 。

/*** File: max_product_cutting.cpp* Created Time: 2023-07-21* Author: Krahets (krahets@163.com)*/#include "../utils/common.hpp"/* 最大切分乘积:贪心 */
int maxProductCutting(int n) {// 当 n <= 3 时,必须切分出一个 1if (n <= 3) {return 1 * (n - 1);}// 贪心地切分出 3 ,a 为 3 的个数,b 为余数int a = n / 3;int b = n % 3;if (b == 1) {// 当余数为 1 时,将一对 1 * 3 转化为 2 * 2return (int)pow(3, a - 1) * 2 * 2;}if (b == 2) {// 当余数为 2 时,不做处理return (int)pow(3, a) * 2;}// 当余数为 0 时,不做处理return (int)pow(3, a);
}/* Driver Code */
int main() {int n = 58;// 贪心算法int res = maxProductCutting(n);cout << "最大切分乘积为" << res << endl;return 0;
}

3.正确性证明

使用反证法,只分析 𝑛 ≥ 3 的情况。
1.所有因子 ≤ 3 :假设最优切分方案中存在 ≥ 4 的因子 𝑥 ,那么一定可以将其继续划分为 2(𝑥 − 2) ,从而获得更大的乘积。这与假设矛盾。
2. 切分方案不包含 1 :假设最优切分方案中存在一个因子 1 ,那么它一定可以合并入另外一个因子中,以获得更大的乘积。这与假设矛盾。
3. 切分方案最多包含两个 2 :假设最优切分方案中包含三个 2 ,那么一定可以替换为两个 3 ,乘积更大。这与假设矛盾。

学习地址

学习地址:https://github.com/krahets/hello-algo
重新复习数据结构,所有的内容都来自这里。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/315559.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

51.HarmonyOS鸿蒙系统 App(ArkUI)通知

普通文本通知测试 长文本通知测试 多行文本通知测试 图片通知测试 进度条通知测试 通知简介 应用可以通过通知接口发送通知消息&#xff0c;终端用户可以通过通知栏查看通知内容&#xff0c;也可以点击通知来打开应用。 通知常见的使用场景&#xff1a; 显示接收到的短消息、…

GPT-3.5 Turbo 的 temperature 设置为 0 就是贪婪解码?

&#x1f349; CSDN 叶庭云&#xff1a;https://yetingyun.blog.csdn.net/ 将 GPT-3.5 Turbo 的 temperature 设置为 0 通常意味着采用贪婪解码&#xff08;greedy decoding&#xff09;策略。在贪婪解码中&#xff0c;模型在每一步生成文本时选择概率最高的词元&#xff0c;从…

Leetcode—1672. 最富有客户的资产总量【简单】

2024每日刷题&#xff08;120&#xff09; Leetcode—1672. 最富有客户的资产总量 实现代码 class Solution { public:int maximumWealth(vector<vector<int>>& accounts) {int ans 0;for(vector<vector<int>>::iterator it accounts.begin();…

SEGGER Embedded Studio IDE移植FreeRTOS

SEGGER Embedded Studio IDE移植FreeRTOS 一、简介二、技术路线2.1 获取FreeRTOS源码2.2 将必要的文件复制到工程中2.2.1 移植C文件2.2.2 移植portable文件2.2.3 移植头文件 2.3 创建FreeRTOSConfig.h并进行配置2.3.1 处理中断优先级2.3.2 configASSERT( x )的处理2.3.3 关于系…

PostgreSQL 14 向量相似度搜索插件 (pgvector) 安装指南

本文是关于在 PostgreSQL 14 中安装并使用向量相似度搜索插件(pgvector)的详细指南。此插件允许用户在数据库中执行高效的向量运算,特别适用于机器学习模型的向量数据存储与检索场景。 环境需求 已安装PostgreSQL 14或更高版本。安装了Visual Studio 2022,用于编译插件。安装…

CentOS命令大全:掌握关键命令及其精妙用法!

CentOS是一种流行的开源企业级Linux发行版&#xff0c;它基于Red Hat Enterprise Linux (RHEL)的源代码构建。对于系统管理员和运维工程师来说&#xff0c;掌握CentOS的常用命令至关重要。 这些命令不仅可以帮助管理服务器&#xff0c;还可以进行故障排查、性能监控和安全加固等…

fatal: unable to access ‘https://github.com/alibaba/flutter_boost.git/

Git error. Command: git fetch stdout: stderr: fatal: unable to access ‘https://github.com/alibaba/flutter_boost.git/’: Failed to connect to github.com port 443 after 75005 ms: Couldn’t connect to server exit code: 128 GitHub (国际型)代码 分发平台/托管平…

IDM下载器安装cmd注册

一、下载注册 安装包去IDM官网下载最新的试用版即可 或者直达百度网盘下载&#xff08;担心被河蟹&#xff0c;放在txt中了&#xff09;包含IDM下载器安装包和注册软件 IDM下载器安装包和注册软件下载地址链接 https://download.csdn.net/download/qq_31237581/89215452 如果…

第十五届蓝桥杯省赛第二场PythonB组A题【进制】题解(AC)

解题思路 按照题意进行模拟&#xff0c;计算 x x x 的 b b b 进制过程中&#xff0c;若出现余数大于 9 9 9&#xff0c;则说明 x x x 的 b b b 进制一定要用字母进行表示。 x 8100178706957568def check(x, b):while x:if x % b > 10:return Falsex // breturn True…

C# 开源SDK 工业相机库 调用海康相机 大恒相机

C# MG.CamCtrl 工业相机库 介绍一、使用案例二、使用介绍1、工厂模式创建实例2、枚举设备&#xff0c;初始化3、启动相机4、取图5、注销相机 三、接口1、相机操作2、启动方式3、取图4、设置/获取参数 介绍 c# 相机库&#xff0c;含海康、大恒品牌2D相机的常用功能。 底层采用回…

AI大模型探索之路-训练篇2:大语言模型预训练基础认知

文章目录 前言一、预训练流程分析二、预训练两大挑战三、预训练网络通信四、预训练数据并行五、预训练模型并行六、预训练3D并行七、预训练代码示例总结 前言 在人工智能的宏伟蓝图中&#xff0c;大语言模型&#xff08;LLM&#xff09;的预训练是构筑智慧之塔的基石。预训练过…

eclipse 如何创建python文件

一、准备 1.平台要求&#xff1a; 电脑除了要安装eclipse软件和Python语言包之外&#xff0c;还需要将Python集成到eclipse软件中&#xff0c;网上有很多的方法&#xff0c;这里就不细细介绍如何集成了。 在下面界面中可以看到自己已经安装了继承插件。具体方法见步骤2&…

运维 kubernetes(k8s)基础学习

一、容器相关 1、发展历程&#xff1a;主机–虚拟机–容器 主机类似别墅的概念&#xff0c;一个地基上盖的房子只属于一个人家&#xff0c;很多房子会空出来&#xff0c;资源比较空闲浪费。 虚拟机类似楼房&#xff0c;一个地基上盖的楼房住着很多人家&#xff0c;相对主机模式…

Linux——(关于权限常见的3个问题)

文章目录 1.修改文件或者目录的拥有者和所属组1.1chown指令1.2chgrp指令 2.常见的权限三个问题2.1对应一个目录&#xff0c;如果要进入&#xff0c;需要什么权限&#xff1f;2.2为什么我们创建的文件默认权限不是7772.2.1关于Linux下的权限掩码 2.3文件能否被删除取决于什么2.3…

upload-labs通关

前记&#xff1a; 在这里面我们使用一句话木马时使用php里的一个函数phpinfo&#xff08;&#xff09;&#xff0c;该函数能显示出网页具体的php版本和有关的信息。 pass-01&#xff08;js前端验证&#xff09; 方法1&#xff1a;禁用js/删除js验证 1.禁用js 按f12&#xff…

Android Studio开发工具学习之Git远程仓库拉取与推送

Git远程仓库操作 1.1 推送项目到远端服务器1.1.1 进入Gitee或Github、创建一个新的仓库1.1.2 将Android Studio中项目推送至Gitee 1.2 从远端服务器拉取项目1.2.1 AS工程页拉取新项目1.2.2 AS启动页拉取项目 1.1 推送项目到远端服务器 1.1.1 进入Gitee或Github、创建一个新的仓…

(六)几何平均数计算 补充案例 #统计学 #CDA学习打卡

一. 两个案例 1&#xff09;几何平均数计算&#xff1a;基金年平均增长率计算 在财务、投资和银行业的问题中&#xff0c;几何平均数的应用尤为常见&#xff0c;当你任何时候想确定过去几个连续时期的平均变化率时&#xff0c;都能应用几何平均数。其他通常的应用包括物种总体…

嵌入式物联网实战开发笔记-乐鑫ESP32开发环境ESP-IDF搭建【doc.yotill.com】

乐鑫ESP32入门到精通项目开发参考百例下载&#xff1a; 链接&#xff1a;百度网盘 请输入提取码 提取码&#xff1a;4e33 3.1 ESP-IDF 简介 ESP-IDF&#xff08;Espressif IoT Development Framework&#xff09;是乐鑫&#xff08;Espressif Systems&#xff09;为 ESP 系列…

JMeter的下载安装与使用(Mac)

1、下载地址​​​​​​https://jmeter.apache.org/download_jmeter.cgi 2、下载Binaries 下的apache-jmeter5.5.tgz 3、解压 4、启动 在bin目录下打开终端&#xff0c;输入sh jmeter 出现jmeter首页界面&#xff0c;即为成功。 5、使用 5.1 语言选择 option选项卡&am…

【Vue3+Tres 三维开发】01-HelloWord

预览 什么是TRESJS 简单的说,就是基于THREEJS封装的能在vue3中使用的一个组件,可以像使用组件的方式去创建场景和模型。优势就是可以快速创建场景和要素的添加,并且能很明确知道创景中的要素构成和结构。 项目创建 npx create-vite@latest # 选择 vue typescript安装依赖…