LLaMA3(Meta)微调SFT实战Meta-Llama-3-8B-Instruct

LlaMA3-SFT

LlaMA3-SFT, Meta-Llama-3-8B/Meta-Llama-3-8B-Instruct微调(transformers)/LORA(peft)/推理

项目地址

  • https://github.com/yongzhuo/LLaMA3-SFT
  • 默认数据类型为bfloat6

备注

1. 非常重要: weights要用bfloat16/fp32/tf32(第二版大模型基本共识), 不要用fp16, fp16会特别容易loss=NAN;
2. SFT最好还是像预训练那样, input/output都计算loss;
2. transformers需要4.40.0及以上;
3. llama3, 模型的词典大小为128256, 使用tiktoken;
4. llama3网络架构同Llama2, 使用GQA/MQA等加速; 
5. prompt:5.1 标准格式为: 
text_input + text_output5.2 prompt格式为: 
<|begin_of_text|><|start_header_id|>system<|end_header_id|>{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>{text_input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>{text_output}<|eot_id|>
6 微调输入输出:输入:"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{text_input}<|eot_id|>"输出:"<|start_header_id|>assistant<|end_header_id|>\n\n{text_output}<|eot_id|>"
7 推理输入输出(assistant\n放置位置不同):输入:"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{text_input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"输出:"{text_output}<|eot_id|>"
8. 网络各层名称
('base_model.model.model.embed_tokens.weight', torch.bfloat16, False)
......
('base_model.model.model.layers.31.self_attn.q_proj.weight', torch.bfloat16, False)
('base_model.model.model.layers.31.self_attn.k_proj.weight', torch.bfloat16, False)
('base_model.model.model.layers.31.self_attn.v_proj.weight', torch.bfloat16, False)
('base_model.model.model.layers.31.self_attn.o_proj.weight', torch.bfloat16, False)
('base_model.model.model.layers.31.mlp.gate_proj.weight', torch.bfloat16, False)
('base_model.model.model.layers.31.mlp.up_proj.weight', torch.bfloat16, False)
('base_model.model.model.layers.31.mlp.down_proj.weight', torch.bfloat16, False)
('base_model.model.model.layers.31.input_layernorm.weight', torch.bfloat16, False)
('base_model.model.model.layers.31.post_attention_layernorm.weight', torch.bfloat16, False)
('base_model.model.model.norm.weight', torch.bfloat16, False)
('base_model.model.lm_head.weight', torch.bfloat16, False)9. RuntimeError: unscale_() has already been called on this optimizer since the last update().微调语料太少导致的

环境配置

transformers>=4.44.0
torch>=1.13.0
safetensors>=0.4.1
accelerate==0.27.1
fsspec==2023.9.2
rouge==1.0.1
nltk==3.6.6
peft>=0.2.0
tiktoken
numpy
tqdm

微调

地址: llama3_sft/ft_llama3配置: llama3_sft/ft_llama3/config.py
训练: python train.py
推理: python predict.py
验证: python evaluation.py
接口: python post_api.py

数据集-中文

  • https://huggingface.co/datasets/JosephusCheung/GuanacoDataset
  • https://huggingface.co/datasets/shareAI/shareGPT_cn
  • https://huggingface.co/datasets/Mutonix/RefGPT-Fact
  • https://huggingface.co/datasets/BAAI/COIG
  • https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM
  • https://github.com/carbonz0/alpaca-chinese-dataset
  • https://github.com/LianjiaTech/BELLE
  • https://github.com/PhoebusSi/Alpaca-CoT
  • https://github.com/Hello-SimpleAI/chatgpt-comparison-detection
  • https://github.com/yangjianxin1/Firefly
  • https://github.com/XueFuzhao/InstructionWild
  • https://github.com/OpenLMLab/MOSS
  • https://github.com/thu-coai/Safety-Prompts
  • https://github.com/LAION-AI/Open-Assistant
  • https://github.com/TigerResearch/TigerBot

参考/感谢

  • https://github.com/meta-llama/llama3
  • https://github.com/QwenLM/Qwen1.5
  • https://github.com/google/gemma_pytorch
  • https://huggingface.co/google/gemma-2b-it
  • https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
  • https://github.com/THUDM/ChatGLM-6B
  • https://github.com/THUDM/GLM
  • https://github.com/tatsu-lab/stanford_alpaca
  • https://github.com/LianjiaTech/BELLE
  • https://github.com/huggingface/peft
  • https://github.com/mymusise/ChatGLM-Tuning
  • https://github.com/bojone/bert4keras
  • trl
  • math23k

微调日志-advgen

默认的bf16微调, 计算全部loss(同pt, input/output), loss太低

在这里插入图片描述在这里插入图片描述

推理日志-advgen(SFT), 感觉学到了一些东西, 又没有学会

('base_model.model.base_model.model.model.layers.31.self_attn.q_proj.weight', torch.bfloat16, False, tensor([[ 0.0078, -0.0035,  0.0075,  ..., -0.0007, -0.0016, -0.0020],[ 0.0036, -0.0019,  0.0140,  ..., -0.0161, -0.0037,  0.0012],[ 0.0080,  0.0125, -0.0103,  ..., -0.0005, -0.0267,  0.0027],...,[-0.0061,  0.0166,  0.0148,  ..., -0.0105, -0.0165,  0.0242],[-0.0181, -0.0244,  0.0100,  ..., -0.0334,  0.0020, -0.0227],[-0.0042, -0.0181,  0.0114,  ...,  0.0027, -0.0004, -0.0002]],dtype=torch.bfloat16))
('base_model.model.base_model.model.model.layers.31.self_attn.q_proj.lora_A.default.weight', torch.float32, False, tensor([[-0.0188,  0.0052, -0.0048,  ..., -0.0073,  0.0091,  0.0070],[-0.0117, -0.0048, -0.0020,  ...,  0.0009,  0.0169,  0.0139],[ 0.0011, -0.0023, -0.0166,  ..., -0.0071, -0.0082,  0.0082],...,[ 0.0127, -0.0045, -0.0137,  ..., -0.0146,  0.0114, -0.0145],[ 0.0038, -0.0148,  0.0001,  ..., -0.0172, -0.0139,  0.0062],[-0.0056,  0.0132,  0.0115,  ...,  0.0100,  0.0127,  0.0004]]))
('base_model.model.base_model.model.model.layers.31.self_attn.q_proj.lora_B.default.weight', torch.float32, False, tensor([[ 6.0165e-04, -1.8864e-04,  5.4384e-04,  ...,  3.9676e-04,-1.9826e-04, -7.4172e-05],[ 2.4563e-03, -2.3599e-03,  2.0984e-03,  ...,  1.9662e-03,1.5514e-03, -1.8005e-03],[-4.9125e-03,  4.7831e-03, -4.6263e-03,  ..., -4.3837e-03,-3.4190e-03,  4.2660e-03],...,[ 1.2281e-05,  5.1583e-04, -1.4735e-04,  ...,  1.3617e-04,-9.5673e-04,  8.3033e-04],[-1.5139e-03,  3.0022e-03, -2.4098e-03,  ..., -1.9860e-03,-2.3010e-03,  2.5711e-03],[ 1.6433e-03, -2.0675e-03,  2.2618e-03,  ...,  1.4840e-03,1.1958e-03, -1.3300e-03]]))
('base_model.model.base_model.model.model.layers.31.self_attn.k_proj.weight', torch.bfloat16, False, tensor([[ 0.0126, -0.0269,  0.0297,  ...,  0.0481, -0.0057,  0.0061],[-0.0262, -0.0154, -0.0427,  ..., -0.0217, -0.0513,  0.0092],[ 0.0098,  0.0058,  0.0157,  ..., -0.0054, -0.0025, -0.0024],...,[-0.0198,  0.0408, -0.0136,  ..., -0.0173, -0.0432,  0.0082],[ 0.0312,  0.0239,  0.0247,  ..., -0.0171, -0.0284, -0.0432],[-0.0096,  0.0043,  0.0142,  ..., -0.0164, -0.0386,  0.0206]],dtype=torch.bfloat16))
('base_model.model.base_model.model.model.layers.31.self_attn.k_proj.lora_A.default.weight', torch.float32, False, tensor([[ 0.0137, -0.0115,  0.0137,  ..., -0.0069, -0.0056, -0.0032],[-0.0117, -0.0096, -0.0165,  ..., -0.0014,  0.0045, -0.0028],[ 0.0072, -0.0115,  0.0109,  ..., -0.0169, -0.0165,  0.0081],...,[-0.0194,  0.0073, -0.0093,  ...,  0.0050, -0.0120,  0.0028],[-0.0064, -0.0142, -0.0112,  ..., -0.0126,  0.0087,  0.0097],[-0.0108,  0.0042, -0.0046,  ...,  0.0105, -0.0111, -0.0107]]))
('base_model.model.base_model.model.model.layers.31.self_attn.k_proj.lora_B.default.weight', torch.float32, False, tensor([[ 0.0024, -0.0033, -0.0026,  ..., -0.0024, -0.0035, -0.0017],[ 0.0016, -0.0022, -0.0032,  ..., -0.0017, -0.0023,  0.0015],[-0.0028,  0.0032,  0.0029,  ...,  0.0027,  0.0034,  0.0017],...,[-0.0015, -0.0001,  0.0005,  ...,  0.0001,  0.0006, -0.0047],[ 0.0022,  0.0023, -0.0005,  ..., -0.0007, -0.0013,  0.0028],[-0.0003, -0.0020, -0.0002,  ..., -0.0003, -0.0003, -0.0021]]))
('base_model.model.base_model.model.model.layers.31.self_attn.v_proj.weight', torch.bfloat16, False, tensor([[ 0.0172,  0.0181, -0.0032,  ..., -0.0250, -0.0186,  0.0119],[-0.0042,  0.0047, -0.0134,  ..., -0.0077,  0.0078, -0.0031],[-0.0422, -0.0249, -0.0136,  ..., -0.0295,  0.0302, -0.0123],...,[ 0.0076, -0.0002, -0.0001,  ...,  0.0093, -0.0047, -0.0044],[-0.0014, -0.0033, -0.0076,  ..., -0.0109, -0.0012, -0.0215],[-0.0232,  0.0025,  0.0060,  ...,  0.0068, -0.0093, -0.0073]],dtype=torch.bfloat16))
('base_model.model.base_model.model.model.layers.31.self_attn.v_proj.lora_A.default.weight', torch.float32, False, tensor([[ 0.0090,  0.0004, -0.0076,  ...,  0.0153,  0.0041, -0.0103],[ 0.0138,  0.0015, -0.0053,  ..., -0.0128,  0.0011, -0.0022],[-0.0111, -0.0032,  0.0006,  ..., -0.0077,  0.0128,  0.0151],...,[-0.0029,  0.0131,  0.0163,  ..., -0.0044, -0.0083, -0.0115],[ 0.0041,  0.0133,  0.0181,  ...,  0.0027,  0.0083,  0.0050],[ 0.0024, -0.0063,  0.0042,  ..., -0.0021, -0.0047,  0.0007]]))
('base_model.model.base_model.model.model.layers.31.self_attn.v_proj.lora_B.default.weight', torch.float32, False, tensor([[-3.0396e-04, -1.8482e-04, -4.5843e-04,  ..., -7.0217e-05,-7.8356e-04, -3.6097e-04],[-6.1859e-04, -1.8265e-04,  3.9717e-04,  ..., -1.0677e-03,-1.9114e-03, -1.1090e-03],[-3.2717e-04,  5.8097e-04,  2.8924e-04,  ...,  2.1774e-04,2.1301e-04, -4.1886e-04],...,[-1.9359e-03, -1.4303e-03, -1.5492e-03,  ..., -1.3788e-03,-1.8295e-03, -2.1401e-03],[-6.3756e-04, -5.9278e-04, -4.7388e-04,  ..., -4.0911e-04,-2.1048e-04, -5.5398e-04],[-1.9948e-03, -2.3558e-03, -2.5491e-03,  ..., -1.5711e-03,-1.9010e-03, -2.4418e-03]]))
('base_model.model.base_model.model.model.layers.31.self_attn.o_proj.weight', torch.bfloat16, False, tensor([[ 0.0198, -0.0121, -0.0223,  ...,  0.0117, -0.0031,  0.0131],[ 0.0003, -0.0032, -0.0046,  ...,  0.0013, -0.0013,  0.0123],[-0.0073,  0.0129, -0.0085,  ..., -0.0016,  0.0074, -0.0052],...,[ 0.0015,  0.0116, -0.0047,  ..., -0.0004, -0.0016,  0.0125],[-0.0167,  0.0030,  0.0166,  ..., -0.0014, -0.0126,  0.0087],[ 0.0172, -0.0017,  0.0156,  ..., -0.0197,  0.0104, -0.0012]],dtype=torch.bfloat16))
('base_model.model.base_model.model.model.layers.31.mlp.gate_proj.weight', torch.bfloat16, False, tensor([[-0.0142,  0.0153, -0.0243,  ...,  0.0134,  0.0041,  0.0069],[-0.0006,  0.0083,  0.0076,  ...,  0.0160,  0.0080,  0.0121],[-0.0128,  0.0200, -0.0142,  ...,  0.0060, -0.0074, -0.0006],...,[ 0.0054, -0.0041,  0.0251,  ...,  0.0022,  0.0177,  0.0177],[-0.0178, -0.0178,  0.0045,  ...,  0.0131, -0.0084, -0.0108],[-0.0269, -0.0266, -0.0234,  ...,  0.0366,  0.0393,  0.0086]],dtype=torch.bfloat16))
('base_model.model.base_model.model.model.layers.31.mlp.up_proj.weight', torch.bfloat16, False, tensor([[-1.6357e-02, -2.5513e-02, -6.4087e-03,  ...,  1.8555e-02,-7.5684e-03,  9.8877e-03],[ 6.4697e-03,  1.2436e-03,  1.2390e-02,  ...,  7.2937e-03,3.4668e-02, -3.9673e-03],[ 4.4556e-03,  2.2583e-03,  5.8594e-03,  ..., -8.6060e-03,1.4465e-02, -2.1484e-02],...,[ 2.5757e-02,  1.9836e-03,  1.8677e-02,  ...,  5.1880e-03,1.0864e-02,  9.9659e-05],[-3.5400e-03,  1.4221e-02, -8.6060e-03,  ...,  6.6833e-03,1.0071e-03,  1.2512e-02],[ 9.5825e-03, -1.3489e-02, -1.3885e-03,  ..., -4.4861e-03,-3.0823e-03, -9.3384e-03]], dtype=torch.bfloat16))
('base_model.model.base_model.model.model.layers.31.mlp.down_proj.weight', torch.bfloat16, False, tensor([[-0.0334,  0.0152,  0.0194,  ...,  0.0025,  0.0114,  0.0013],[-0.0050, -0.0064,  0.0026,  ..., -0.0042,  0.0032, -0.0086],[-0.0094, -0.0220, -0.0214,  ...,  0.0029, -0.0057, -0.0084],...,[ 0.0125,  0.0017, -0.0042,  ..., -0.0166, -0.0077,  0.0110],[-0.0128,  0.0073,  0.0140,  ..., -0.0193,  0.0125,  0.0109],[-0.0074, -0.0139,  0.0104,  ...,  0.0105,  0.0035,  0.0027]],dtype=torch.bfloat16))
('base_model.model.base_model.model.model.layers.31.input_layernorm.weight', torch.bfloat16, False, tensor([0.4629, 0.3984, 0.4434,  ..., 0.4277, 0.3887, 0.2988],dtype=torch.bfloat16))
('base_model.model.base_model.model.model.layers.31.post_attention_layernorm.weight', torch.bfloat16, False, tensor([0.5273, 0.4883, 0.5078,  ..., 0.5273, 0.4863, 0.4238],dtype=torch.bfloat16))
('base_model.model.base_model.model.model.norm.weight', torch.bfloat16, False, tensor([2.6562, 2.5781, 2.6094,  ..., 2.5938, 2.2656, 2.5156],dtype=torch.bfloat16))
('base_model.model.base_model.model.lm_head.weight', torch.bfloat16, False, tensor([[ 9.8267e-03,  1.7456e-02,  3.6926e-03,  ...,  5.7983e-04,-1.6968e-02, -1.0986e-02],[-6.5613e-03,  1.1719e-02,  1.1536e-02,  ..., -1.0193e-02,9.3994e-03, -1.4496e-03],[ 1.4160e-02,  9.4604e-03,  7.4463e-03,  ..., -1.9379e-03,-5.7678e-03, -1.4771e-02],...,[-3.7231e-03, -1.3065e-04,  7.5684e-03,  ...,  9.6798e-05,7.5989e-03,  6.0425e-03],[-3.7231e-03, -1.3065e-04,  7.5684e-03,  ...,  9.6798e-05,7.5989e-03,  6.0425e-03],[-3.7231e-03, -1.3065e-04,  7.5684e-03,  ...,  9.6798e-05,7.5989e-03,  6.0425e-03]], dtype=torch.bfloat16))
trainable params: 0 || all params: 8039698432 || trainable%: 0.0
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
128009
128000
128009
198
882
78191
{'content': '类型#裙*版型#宽松*版型#显瘦*颜色#黑色*图案#撞色*裙型#直筒裙*裙款式#拼接'}
tensor([[128000, 128006,   9125, 128007,    271,   2675,    527,    264,  11190,18328,     11,    220,  15225,  11883,  99337,  33014, 108891, 113925,13, 128009, 128006,    882, 128007,    271,  33005,      2,  70892,247,      9,  41401,  25287,      2, 118188, 104500,      9,  41401,25287,      2, 105593, 114431,     99,      9, 124510,  39135,      2,57752,  39135,      9,  29129,  81742,      2,  58843,    252,  39135,9,  70892,    247,  25287,      2,  74245, 127946,  70892,    247,9,  70892,    247,  69253,  29430,      2, 125973,  30177, 128009,128006,  78191, 128007,    271]])
<|begin_of_text|><|start_header_id|>system<|end_header_id|>You are a helpful assistant, 请用简体中文回答.<|eot_id|><|start_header_id|>user<|end_header_id|>类型#裙*版型#宽松*版型#显瘦*颜色#黑色*图案#撞色*裙型#直筒裙*裙款式#拼接<|eot_id|><|start_header_id|>assistant<|end_header_id|>根据你的描述,这是一件黑色撞色拼接直筒裙,裙型宽松,版型显瘦,裙款式拼接。<|eot_id|>617.0838704109192
请输入:
类型#裤*材质#牛仔布*颜色#白色*风格#简约*图案#线条*裤长#短裤*裤型#阔腿裤*裤腰型#高腰*裤口#毛边
请稍等...
################################################################################################################################
{'content': '类型#裤*材质#牛仔布*颜色#白色*风格#简约*图案#线条*裤长#短裤*裤型#阔腿裤*裤腰型#高腰*裤口#毛边'}
tensor([[128000, 128006,   9125, 128007,    271,   2675,    527,    264,  11190,18328,     11,    220,  15225,  11883,  99337,  33014, 108891, 113925,13, 128009, 128006,    882, 128007,    271,  33005,      2,  70892,97,      9, 103234, 103706,      2, 109022, 120248,  52927,      9,124510,  39135,      2, 101828,  39135,      9, 103125,  35083,      2,99337,  95337,      9,  29129,  81742,      2,  44368,  40089,      9,70892,     97,  46961,      2, 106649,  70892,     97,      9,  70892,97,  25287,      2,  33443,    242, 122072,  70892,     97,      9,70892,     97, 115519,  25287,      2,  45736, 115519,      9,  70892,97,  40526,      2, 105811, 103377, 128009, 128006,  78191, 128007,271]])
<|begin_of_text|><|start_header_id|>system<|end_header_id|>You are a helpful assistant, 请用简体中文回答.<|eot_id|><|start_header_id|>user<|end_header_id|>类型#裤*材质#牛仔布*颜色#白色*风格#简约*图案#线条*裤长#短裤*裤型#阔腿裤*裤腰型#高腰*裤口#毛边<|eot_id|><|start_header_id|>assistant<|end_header_id|>根据您的描述,这是一双简约的短裤,使用牛仔布,白色为主色,线条图案,阔腿裤型,高腰,毛边裤口。<|eot_id|>

推理日志-advgen(SFT), 修改prompt微调, 指令遵循得不是太好, 感觉还是中文预训练语料太少了吧

<|begin_of_text|><|start_header_id|>system<|end_header_id|>You are a helpful assistant, 请根据输入生成创意广告, 用简体中文回答.<|eot_id|><|start_header_id|>user<|end_header_id|>类型#裙*版型#宽松*版型#显瘦*颜色#黑色*图案#撞色*裙型#直筒裙*裙款式#拼接<|eot_id|><|start_header_id|>assistant<|end_header_id|>Here's a creative advertisement based on your input:**Headline:** 撞色撞焦点!黑色撞色拼接直筒裙**Body:**你准备好撞焦点了吗?我们的黑色撞色拼接直筒裙将让你在人群中脱颖而出!宽松版型,显瘦效果,让你显得更加苗条迷人。撞色图案,黑色拼接,更加增加裙子的时尚感和吸引力。这不是一件裙子,而是一件生活方式。穿上我们的黑色撞色拼接直筒裙,你将成为焦点,吸引所有人的目光。**Call to Action:** 快来试穿我们的黑色撞色拼接直筒裙,体验一下撞焦点的感觉!**Visuals:** A stunning image of a model wearing the black and color-blocked straight-cut skirt, posing confidently with a bold expression. The skirt is designed to accentuate her curves, and the color-blocked pattern adds a touch of edginess to the overall look. The background is a dark, sleek cityscape, emphasizing the
###################################################################
<|begin_of_text|><|start_header_id|>system<|end_header_id|>You are a helpful assistant, 请根据输入生成创意广告, 用简体中文回答.<|eot_id|><|start_header_id|>user<|end_header_id|>类型#裤*材质#牛仔布*颜色#白色*风格#简约*图案#线条*裤长#短裤*裤型#阔腿裤*裤腰型<|eot_id|><|start_header_id|>assistant<|end_header_id|>Here's a creative ad for the specified type of pants:**Title:** 时尚简约,阔腿裤,白色牛仔布短裤**Image:** A stylish photo of a person wearing the white cowboy-style short pants with a simple and minimalist design. The pants have a wide leg and a high waist, with a subtle stitching pattern along the seams.**Headline:** 简约 yet 时尚,阔腿裤白色牛仔布短裤,让你展现自己的个性!**Body:** 不需要很多花哨的设计,阔腿裤白色牛仔布短裤就足以让你展现自己的个性!这款简约的短裤,以牛仔布为材料,白色为主色调,线条简洁,给人一种简洁 yet 时尚的感觉。无论是街头、工作或休闲,这款短裤都能满足你的需求,让你展现自己的个性!**Call-to-Action:** 快来抢购这款简约 yet 时尚的短裤,展现自己的个性!**Target Audience:** Young adults who value simplicity and individuality
################################################################################
<|begin_of_text|><|start_header_id|>system<|end_header_id|>You are a helpful assistant, 请根据输入生成创意广告, 用简体中文回答.<|eot_id|><|start_header_id|>user<|end_header_id|>类型#裤*材质#牛仔布*颜色#白色*风格#简约*图案#线条*裤长#短裤*裤型#阔腿裤*裤腰型#高腰*裤口#毛边<|eot_id|><|start_header_id|>assistant<|end_header_id|>Here's a creative advertisement for the product:**Title:** 升级你的夏日风采!【简约牛仔短裤】**Image:** A stylish model wearing the white cowhide short pants with a high waist and wide legs, posing in a casual yet chic way. The pants have a subtle texture and a raw edge hem, adding a touch of edginess to the overall look.**Headline:** 升级你的夏日风采!简单 yet chic,简约牛仔短裤让你夏日更加精彩!**Body Text:** 夏日到了,时尚也到了!简约牛仔短裤是夏日的必备!高腰设计,阔腿裤造型,毛边裤口,简约牛仔短裤让你夏日更加精彩!不仅舒适还非常时尚,简约牛仔短裤是你的夏日必备!**Call-to-Action:** 快来获取你的简约牛仔短裤,升级你的夏日风采!This advertisement highlights the key features of the product, such as the high waist, wide legs, and raw edge hem, while also emphasizing its comfort and stylishness

推理日志-advgen(原始Instruct)

<|begin_of_text|><|start_header_id|>system<|end_header_id|>You are a helpful assistant, 请用简体中文回答.<|eot_id|><|start_header_id|>user<|end_header_id|>类型#裙*材质#天丝*裙长#连衣裙*裙袖长#长袖<|eot_id|><|start_header_id|>assistant<|end_header_id|>Based on your input, I understand that you are looking for information about a dress with the following specifications:* Type: 连衣裙 (a-line dress)
* Material: 天丝 (silk)
* Length: 不指定 (no specific length mentioned, but since it's a 连衣裙, it's likely to be knee-length or longer)
* Sleeve length: 长袖 (long sleeves)Here's a summary of your requirements:* A-line dress made of silk with long sleeves and a knee-length or longer hem.If you have any further questions or would like to know more about this type of dress, feel free to ask! 😊<|eot_id|>
#############################################################
<|begin_of_text|><|start_header_id|>system<|end_header_id|>You are a helpful assistant, 请用简体中文回答.<|eot_id|><|start_header_id|>user<|end_header_id|>类型#裙*版型#宽松*版型#显瘦*颜色#黑色*图案#撞色*裙型#直筒裙*裙款式#拼接<|eot_id|><|start_header_id|>assistant<|end_header_id|>Based on your input, I can help you with the following information:* 类型:裙 (type: skirt)
* 版型:宽松 (style: loose-fitting)
* 版型:显瘦 (style: slimming)
* 颜色:黑色 (color: black)
* 图案:撞色 (pattern: contrast color)
* 裙型:直筒裙 (skirt type: straight skirt)
* 裙款式:拼接 (skirt style: patchwork)So, the overall description is: a black straight skirt with a loose-fitting and slimming design, featuring a contrast color pattern through patchwork.<|eot_id|>
#############################################################
<|begin_of_text|><|start_header_id|>system<|end_header_id|>You are a helpful assistant, 请用简体中文回答.<|eot_id|><|start_header_id|>user<|end_header_id|>类型#裤*材质#牛仔布*颜色#白色*风格#简约*图案#线条*裤长#短裤*裤型#阔腿裤*裤腰型#高腰*裤口#毛边<|eot_id|><|start_header_id|>assistant<|end_header_id|>您所描述的裤子是:* 材质:牛仔布(denim)
* 颜色:白色(white)
* 风格:简约(simple)
* 图案:线条(striped)
* 裤长:短裤(short)
* 裤型:阔腿裤(wide-leg)
* 裤腰型:高腰(high-waisted)
* 裤口:毛边(fringed)总的来说,这是一双简约、白色的牛仔短裤,具有线条图案、阔腿设计和高腰裤口。<|eot_id|>

d|>

You are a helpful assistant, 请用简体中文回答.<|eot_id|><|start_header_id|>user<|end_header_id|>

类型#裤材质#牛仔布颜色#白色风格#简约图案#线条裤长#短裤裤型#阔腿裤裤腰型#高腰裤口#毛边<|eot_id|><|start_header_id|>assistant<|end_header_id|>

您所描述的裤子是:

  • 材质:牛仔布(denim)
  • 颜色:白色(white)
  • 风格:简约(simple)
  • 图案:线条(striped)
  • 裤长:短裤(short)
  • 裤型:阔腿裤(wide-leg)
  • 裤腰型:高腰(high-waisted)
  • 裤口:毛边(fringed)

总的来说,这是一双简约、白色的牛仔短裤,具有线条图案、阔腿设计和高腰裤口。<|eot_id|>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/316960.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【目标检测】YOLOv7 网络结构(与 YOLOv4,YOLOv5 对比)

YOLOv7 和 YOLOv4 Neck 与 Head 结构对比 其实 YOLOv7 的网络结构网上很多文章已经讲得很清除了&#xff0c;网络结构图也有非常多的版本可供选择&#xff0c;因为 YOLOv7 和 YOLOv4 是一个团队的作品&#xff0c;所以在网络结构方面&#xff0c; YOLOv7 和 YOLOv4 有很多相似…

和鲸科技出席第五届空间数据智能学术会议,执行总裁殷自强受邀发表主题报告

4月26日&#xff0c;由 ACM SIGSPATIAL 中国分会、ACM SIGMOD 中国分会主办的第五届空间数据智能学术会议&#xff08;SpatialDI 2024&#xff0c;下简称“会议”&#xff09;在南京盛大开幕。本次会议特邀李清泉院士、周成虎院士、丛高教授、谢炯博士、张雪英教授等国内外知名…

【web安全】-- 命令执行漏洞详解

本文将从原理开始介绍命令执行漏洞并附有三个实例来供各位客官学习 文章目录 一、什么是命令执行漏洞二、出现的原因三、有可能存在命令执行漏洞的函数&#xff08;php&#xff09;1、利用一些函数来实现命令执行2、直接执行系统命令的函数 四、命令拼接符号1、Windows2、linux…

【06016传感器原理与应用】第4章 磁敏传感器 期末复习自考复习

第4章 磁敏传感器 通常把能讲磁学量信号转换成电信号的器材或装置称为磁敏传感器 一、学习目的与要求 通过本章的学习&#xff0c;熟悉并掌握磁敏传感器的工作原理和硬件组成结构。重点掌握半导体的霍尔器件和霍尔集成电路、磁敏二极管、三极管等的工作机理及其应用电路&…

【分享】如何将word格式文档转化为PDF格式

在日常的办公和学习中&#xff0c;我们经常需要将Word文档转换为PDF格式。PDF作为一种通用的文件格式&#xff0c;具有跨平台、易读性高等优点&#xff0c;因此在许多场合下都更为适用。那么&#xff0c;如何实现Word转PDF呢&#xff1f;本文将介绍几种常用的方法&#xff0c;帮…

border-image-slice详细说明

上一篇文章我们介绍了 border-image的用法&#xff0c;其中border-image-source、border-image-width、 border-image-outset都比较简单好理解&#xff0c;这边文章我们重点学一下border-image-slice 属性&#xff0c;它用于定义边框图像如何被切割并应用到元素的边框上。这个属…

vue3 安装-使用之第一篇

首先需要node版本高于V16.14.1 安装 执行 npm create vitelatest 具体选择按照自己实际需要的来 Project name:项目名称 Select a framework:选择用哪种框架 &#xff08;我选择vue&#xff09; Select a variant: 选择用JS还是TS&#xff08;我选择JS&#xff09;找到项目&…

架设WebSocket的最后一环,如何设置好nginx反向代理

WebScoket都已经完工快一个月&#xff0c;经过一段时间的测试&#xff0c;公司还是准备把服务器换到鹅厂&#xff0c;用EO来解决CDN内容分发和DDOS防护问题&#xff0c;由于EO并不支持URL 路径转发&#xff0c;只支持转发到一个站点的80或则443端口&#xff0c;如果想做路径分发…

前端框架技术调研

目前程序员使用前端框架最多的是哪一个&#xff1f;

BiLSTM-KDE的双向长短期记忆神经网络结合核密度估计多变量回归区间预测(Matlab)

BiLSTM-KDE的双向长短期记忆神经网络结合核密度估计多变量回归区间预测&#xff08;Matlab&#xff09; 目录 BiLSTM-KDE的双向长短期记忆神经网络结合核密度估计多变量回归区间预测&#xff08;Matlab&#xff09;效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.BiLS…

【JavaWeb】Day61.SpringBootWeb案例——配置文件

配置文件 参数配置化 在我们之前编写的程序中进行文件上传时&#xff0c;需要调用AliOSSUtils工具类&#xff0c;将文件上传到阿里云OSS对象存储服务当中。而在调用工具类进行文件上传时&#xff0c;需要一些参数&#xff1a; - endpoint //阿里云OSS域名 - accessKey…

Ubuntu 24.04安装搜狗输入法-解决闪屏问题

问题描述 在Ubuntu 24.04 LTS系统中按照官方安装指导《Ubuntu20.04安装搜狗输入法步骤》安装搜狗输入法后&#xff1a; 会出现屏幕闪烁&#xff0c;无法正常使用的问题&#xff1b;系统搜索框和gnome-text-editor无法使用搜狗输入法&#xff1b; 原因分析 闪屏可能是Ubuntu…

scikit-learn:Python中的机器学习-1

简介&#xff1a;问题设置 什么是机器学习&#xff1f; 机器学习是关于构建具有可调参数的程序&#xff0c;这些参数可以自动调整&#xff0c;以便通过适应先前看到的数据来改善其行为。机器学习可以被认为是人工智能的一个子领域&#xff0c;因为这些算法可以被视为构建模块…

书生·浦语大模型实战营之Llama 3 高效部署实践(LMDeploy 版)

书生浦语大模型实战营之Llama 3 高效部署实践&#xff08;LMDeploy 版&#xff09; 环境&#xff0c;模型准备LMDeploy chatTurmind和Transformer的速度对比LMDeploy模型量化(lite)LMDeploy服务(serve) 环境&#xff0c;模型准备 InternStudio 可以直接使用 studio-conda -t …

基于SSM的个人博客系统(二)

目录 第四章 系统设计 4.1 系统总流程 4.2 博主用例 4.3 游客用例 4.4 系统类 一、博客类 二、博客类型类 三&#xff0c;评论类&#xff1a; 四&#xff0e;友情链接类 4.5 E-R图 4.6 系统表设计 前面内容请移步 基于SSM的个人博客系统&#xff08;一&#xff09;…

【云原生】Docker 实践(三):使用 Dockerfile 文件构建镜像

Docker 实践&#xff08;三&#xff09;&#xff1a;使用 Dockerfile 文件构建镜像 1.使用 Dockerfile 文件构建镜像2.Dockerfile 文件详解 1.使用 Dockerfile 文件构建镜像 Dockerfile 是一个文本文件&#xff0c;其中包含了一条条的指令&#xff0c;每一条指令都用于构建镜像…

IOT-9608I-L 的GPIO应用

目录 概述 1 GPIO接口介绍 2 板卡上操作IO 2.1 查看IO驱动 2.2 使用ECHO操作IO 2.2.1 端口选择 2.2.2 查看IO 2.2.3 echo操作IO 3 C语言实现一个操作IO的案例 3.1 功能介绍 3.2 代码实现 3.3 详细代码 4 测试 测试视频地址&#xff1a; IOT-9608I-L的一个简单测试&a…

实验8 NAT配置

实验8 NAT配置 一、 原理描述二、 实验目的三、 实验内容1.实验场景2.实验要求 四、 实验配置五、 实验步骤2.静态NAT配置3.NAT Outbound配置4.NAT Easy-IP配置 一、 原理描述 2019年11月26日&#xff0c;全球43亿个IPv4地址正式耗尽&#xff0c;这意味着没有更多的IPv4地址可…

【圆桌论坛】个人作为嘉宾参与问答环节的总结,Create 2024百度AI开发者大会之AI智能体开发与应用论坛

目录 ⭐前言⭐讨论话题✨本质和价值✨端侧部署✨应用商业模式✨商业模式 ⭐主题总结⭐有趣分享 ⭐前言 首先&#xff0c;非常荣幸和开心作为开发者和创业者代表参加百度Create AI大会分论坛圆桌论坛的问答环节。 在分论坛活动开始前&#xff0c;参加了文心智能体平台&#xff…

交叉调制少样本图像生成用于结直肠组织分类

文章目录 Cross-Modulated Few-Shot Image Generation for Colorectal Tissue Classification摘要方法实验结果 Cross-Modulated Few-Shot Image Generation for Colorectal Tissue Classification 摘要 提出问题&#xff1a; 针对罕见癌症组织的组织病理训练数据稀缺问题&…