BERT一个蛋白质-季军-英特尔创新大师杯冷冻电镜蛋白质结构建模大赛-paipai

关联比赛:  “创新大师杯”冷冻电镜蛋白质结构建模大赛

解决方案

团队介绍

paipai队、取自 PAIN + AI,核心成员如我本人IvanaXu(IvanaXu · GitHub),从事于金融科技业,面向银行信用贷款的风控、运营场景。但我们团队先后打过很多比赛,其中跨领域居多,如天文、海洋,也非常有幸参加本次蛋白质结构建模大赛。我们将延续“他山之石,可以攻玉”的基本思想,这也将在后续方案中体现。

主要方案

01 赛题解析

截屏2022-03-25 09.55.17.png


金融场景下其实就是在追求精准定位问题,并以最小成本换取更大收益。同样的,从现有解析蛋白质结构的主流方法来看,能覆盖较多场景(如生物大分子、静动两态、蛋白质折叠等)且精度较高,但为此需要付出大量人力成本,甚至是在专业软件辅助下才能完成的人工操作。另外,由DeepMind研发的AlphaFold2却能高效几乎0人工输出蛋白质结构,当然这个代价是覆盖场景有限(如生物大分子易错)、局部精度高(需要强依赖于已知蛋白质结构/PDB)。据此我们提出的解决方案是,拥抱类似于AlphaFold2的AI预测技术但充分结合传统方法,或许是最大收益方案。
即复杂生物应用场景下,求一种高效、准确的蛋白质结构解析方法。
所以我们将解决方案聚焦到以下两点:
(1)仅从氨基酸序列出发的AI预测技术为主,通过已知蛋白质结构去做一些自衍生处理,尝试去摆脱对已知蛋白质结构高度依赖;
(2)当遇到已知蛋白质结构甚至是自衍生蛋白质结构都不能很好识别时,再来考虑结合冷冻电镜数据,作为预测结果的辅助性修正,毕竟获取冷冻电镜数据就已经投入了一定的成本;

02 算法设计

截屏2022-03-25 10.02.30.png


如示例2145这个氨基酸序列,我们看到前4位的MSSK、就是一个甲硫氨酸+两个丝氨酸+一个赖氨酸的序列,但我们将它转为以下文本处理:
第一步,将氨基酸序列-蛋白质结构作为一组X-Y对,即使用氨基酸序列预测蛋白质结构,并计划进行自衍生处理1:将衍生后的氨基酸序列-蛋白质结构对进行随机混淆打乱,这一步复赛阶段未实现,但后续我们做了一些尝试;
第二步,将氨基酸序列转化为文本序列,在这里会做自衍生处理2:将它切分为不同长度的文本序列,如左侧V2算法的第一步,将MSSKS每隔4个氨基酸就切分为MSSK、SSKS等等,同样的还会按照5、6不等的长度进行切分,最终使用4、5、6、8、10、12、15、18,分别代表了4、5、6长度段的1倍、2倍、3倍。从生物意义上就代表了一些短氨基酸序列。这种切分方法的优点是可以是因为把其充分序列化,那么蛋白质中的对称重复架构会在序列中特别突出,有点像121213这组数字,我们听一遍后,在脑海中对12、121、21这样的组合印象就很深刻;
第三步,文本处理:尝试提取序列之间的潜在关系,事实上可考虑引入谷歌提出的基于Transformers的双向编码语言模型BERT来解决,但BERT很重,考虑上述成本效益,在此简化应用TF-IDF来处理;
第四步,将处理后序列信息输入至预测模型,输出最接近蛋白质结构;

为进一步比较自衍生处理1、自衍生处理2、以及不同文本处理算法之间的差异,我们先后设计了V1、V2、V3三个算法版本:

  • V1,无自衍生处理1、无自衍生处理2,即MSSK序列会当作M、S、S、K四个单词组成的一句话,直接使用BM25文本模型进行预测;
  • V2,在V1基础上增加自衍生处理2,即MSSK序列会切分为如图MSSK、SSKS、等等单词组成的一句更长的话;

可以通过比较V1、V2来体现自衍生处理2带来的预测增益。

截屏2022-03-25 11.11.03.png

  • V3,会更充分考虑实际蛋白质结构预测中会遇到的问题,并根据本次比赛提供的E-HPC阿里云弹性高性能计算平台改进算法底层一些计算设计,如图:

(1)在高性能计算平台上应用CPU多核并发,能同时计算多个蛋白质,并将氨基酸序列计算转入稀疏矩阵存储 + TF-IDF限制某些高频率出现的简单序列,减少大量空值存储和无效计算,充分压缩氨基酸序列结果,避免内存错误;
(2)在V2的基础上调整BM25文本模型至TF-IDF+LR;
这就是复赛阶段的解决方案。
(3)另外,复赛后我们还在此基础上设计如左虚框部分的自衍生处理1,对算法拓展性做了一部分探索。
引入BERT中MLM/Masked Language Model即遮蔽语言模型的概念,其灵感来自于我们学英语很熟悉的完形填空,如我们通过线上会议XX了答辩,就会填写“参加”这个词。
这种概念其实类似于自衍生处理2,本质上是为了充分提取氨基酸序列的潜在关系,如前面提出的不同长度切分就为了获取一定的上下文信息,即氨基酸序列中S丝氨酸前后的氨基酸信息,但这种方式也仍然是单向或一个正向+一个反向这种假双向。反之MLM能更充分的解决这个问题,因为这个时候模型学到不是一个向量,而是**“一种学习能力”**。
TODO

  • 所以在AAAI2020的工作中,已经有论文提出K-BERT即知识图谱+BERT的概念,使用类似MLM的方式尝试进行知识发现。

同样的,可以使用这个概念来“知识发现”一些未知的蛋白质结构,进而打破上述对已知蛋白质结构的高度依赖。

以下我们来对照AlphaFold2,对比一下上述算法:
 

截屏2022-03-25 11.57.51.png


以2148为例,我们也尝试使用了AlphaFold2:

  • 通过前两栏的RMSD、TM-score来看:

无疑是AlphaFold2最强,但对比V2、V1可以看到,在做了自衍生处理2即序列切分后,TM-score自0.19提升到了0.77,V2算法也就是初赛核心方案。另外,改进后的V3算法从个例来看相对接近于AlphaFold2。

  • 另外,由于我们在调研阶段从PDB中发现了远比训练数据更大的蛋白质,所以这里的long评估项即长氨基酸序列的兼容,AlphaFold2/V1/V2都不同程度地出现在长氨基酸序列计算时内存错误的情况。前面介绍过,V3在做了一些相关设计所以相对可控。且能在不需要GPU的情况下进一步兼容HPC高性能计算,尽管AlphaFold2也提出支持HPC,对此我们未深入体验。

接下来我们看一下可视化结果对比:
 

截屏2022-03-25 11.58.09.png


AlphaFold2已经接近严丝合缝,V1差异还比较大,但V2、V3已经有了相似的蛋白质结构雏形,未来可能可以进一步优化。

03 总结

截屏2022-03-25 12.15.11.png


1、直接转换为文本问题进行解决
事实上我们也发现其实这与Alphafold2的序列处理有类似的地方,但不同AI场景下2D 和3D transformers的发展,可能还可以进一步借鉴。但氨基酸序列的潜在关系我们还是交由更为简单的文本处理算法(TF-IDF)进行提取,这里考虑降低模型复杂性、提高应用效率。
如我们还没有提到的冷冻电镜图片处理,CVPR2022的工作中已经提出了Point-BERT基于掩码建模的3D点云自注意力模型,实现将类似于冷冻电镜数据这种3D结构表达为一个“词汇”集合。跟我们上述将氨基酸序列转化为文本处理的逻辑类似,我们的解决方案也提出了类似的思想,先用氨基酸序列进行文本预测,再对预测不佳的部分根据冷冻电镜数据也进行文本预测,作为辅助性修正,但这部分还没有来得及完成。
2、避免高度依赖已知蛋白质结构
为此前面我们设计了自衍生处理1、自衍生处理2,并通过V1/V2比较证明了自衍生处理2的有效性。也正是引入自衍生处理1,通过V2/V3比较看到了突破这种蛋白质结构依赖带来的额外效益。

相关参考

概念

  • 清华大学结构生物学高精尖创新中心

    https://ww.icsb.tsinghua.edu.cn

  • Alphafold2

    alphafold.ebi.ac.uk

截屏2022-02-11 08.00.50.png

  • 一键构建云上高可用蛋白质结构预测平台(一)

    基于Alphafold2一键构建云上高可用蛋白质结构预测平台 | 亚马逊AWS官方博客

  • PDB,全称Protein Data Bank,是目前最主要的收集蛋白质三维结构的数据库

文章

  • 当AI“进击”蛋白质结构预测
  • 颜宁等点评:AI精准预测蛋白质结构,结构生物学何去何从?
  • 颜宁点评AlphaFold2 + 外行买家秀:蛋白结构预测神器初体验

论文

  • CN104951669A - 一种用于蛋白质结构预测的距离谱构建方法 - Google Patents

image.png

image.png

  • Highly accurate protein structure prediction with AlphaFold

image.png


详见https://github.com/IvanaXu/TianChiProj/tree/master/ProteinStructureModeling
BERT一个蛋白质-季军-英特尔“创新大师杯”冷冻电镜蛋白质结构建模大赛-IvanaXu

查看更多内容,欢迎访问天池技术圈官方地址:BERT一个蛋白质-季军-英特尔创新大师杯冷冻电镜蛋白质结构建模大赛-paipai_天池技术圈-阿里云天池

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/318089.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

算法系列--BFS解决拓扑排序

💕"请努力活下去"💕 作者:Lvzi 文章主要内容:算法系列–算法系列–BFS解决拓扑排序 大家好,今天为大家带来的是算法系列--BFS解决拓扑排序 前言:什么是拓扑排序 拓扑排序–解决有顺序的排序问题(要做事情的先后顺序) …

docker各目录含义

目录含义builder构建docker镜像的工具或过程buildkit用于构建和打包容器镜像,官方构建引擎,支持多阶段构建、缓存管理、并行化构建和多平台构建等功能containerd负责容器生命周期管理,能起、停、重启,确保容器运行。负责镜管理&am…

Java设计模式 _结构型模式_组合模式

一、组合模式 1、组合模式 组合模式(Composite Pattern)是这一种结构型设计模式。又叫部分整体模式。组合模式依据树形结构来组合对象,用来表示部分以及整体层次关系。即:创建了一个包含自己对象组的类,该类提供了修改…

Idea报错:无法访问org.springframework.boot.SpringApplication

在开发项目时,常常会遇到这种问题,报错信息如下图所示 版本号与jdk版本号存在对应关系,61.0对应jdk17,52.0对应jdk8 所以是某个依赖的版本太高,降低该依赖的版本即可 具体步骤: ①修改pom.xml中spring b…

ASP.NET实验室预约系统的设计

摘 要 实验室预约系统的设计主要是基于B/S模型,在Windows系统下,运用ASP.NET平台和SQLServer2000数据库实现实验室预约功能。该设计主要实现了实验室的预约和管理功能。预约功能包括老师对实验室信息、实验项目和实验预约情况的查询以及对实验室的预约…

ubuntu系统搭建pytorch环境详细步骤【笔记】

实践设备:华硕FX-PRO(NVIDIA GeForce GTX 960M) 搭建PyTorch环境的详细步骤如下: 1.安装Ubuntu系统: 下载Ubuntu的镜像文件并制作启动盘。将启动盘插入计算机,启动计算机并按照提示安装Ubuntu系统。 2.…

Linux内核之原子操作:atomic_long_dec用法实例(六十七)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

一起Talk Android吧(第五百五十八回:lombok用法)

文章目录 1. 概述2. 使用方法3. 内容总结 各位看官们大家好,上一回中介绍了如何获取文件读写权限的知识,本章回中将介绍lombok相关的知识。闲话休提,言归正转,让我们一起Talk Android吧! 1. 概述 这是一个java库,用来…

ES全文检索支持拼音和繁简检索

ES全文检索支持拼音和繁简检索 1. 实现目标2. 引入pinyin插件2.1 编译 elasticsearch-analysis-pinyin 插件2.2 安装拼音插件 3. 引入ik分词器插件3.1 已有作者编译后的包文件3.2 只有源代码的版本3.3 安装ik分词插件 4. 建立es索引5.测试检索6. 繁简转换 1. 实现目标 ES检索时…

flutter开发实战-build apk名称及指令abiFilters常用gradle设置

flutter开发实战-build apk名称及指令abiFilters常用gradle设置 最近通过打包flutter build apk lib/main.dart --release,发现apk命名规则需要在build.gradle设置。这里记录一下。 一、apk命名规则 在android/app/build.gradle中需要设置 android.applicationVa…

Pandas入门篇(二)-------Dataframe篇4(进阶)(Dataframe的进阶用法)(机器学习前置技术栈)

目录 概述一、复合索引(一)创建具有复合索引的 DataFrame1. 使用 set_index 方法:2.在创建 DataFrame 时直接指定索引: (二)使用复合索引进行数据选择和切片(三)重置索引&#xff08…

rabbitMq 0 到1

前言 工作中MQ的使用场景是数不胜数,每个公司的技术选型又不太一样,用的哪个MQ,我们必须要先玩起来,RabbitMQ在windows安装遇到很多问题,博客也是五花八门,算了还是自己搞吧,记录一下&#xff…

五大开放式耳机推荐,选对耳机让运动更带感!

看似精彩的户外运动经历背后,其实是枯燥的体能运动和训练,以及独自长途和长时间旅行伴随的孤独感,而排解这些不良情绪的最佳方式就是音乐。如果你希望在运动、舒适、安全和音质之间获得一个最佳平衡,那相比入耳式耳机,…

护航智慧交通安全 | 聚铭精彩亮相2024交通科技创新及信创产品推广交流会

4月26日,石家庄希尔顿酒店内,河北省智能交通协会盛大举办2024年度交通科技创新及信创产品推广交流会。聚铭网络受邀参与,携旗下安全产品及解决方案精彩亮相,为智慧交通安全保驾护航。 为深化高速公路创新驱动发展战略&#xff0…

pthread线程相关

LWP :轻量级 进程,本质仍是进程 进程 :独立地址空间,拥有PCB 线程:有独立的TCB,但没有独立的地址空间(共享) 区别 :在与是否共享地址文件 进程 (独居)&am…

10分钟了解数据质量管理-奥斯汀格里芬 Apache Griffin

在不重视数据质量的大数据发展时期,Griffin并不能引起重视,但是随着数据治理在很多企业的全面开展与落地,数据质量的问题开始引起重视。 1.Griffin简介 Griffin是一个开源的大数据数据质量解决方案,由eBay开源,它支持…

模型智能体开发之metagpt-单智能体实践

需求分析 根据诉求完成函数代码的编写,并实现测试case,输出代码 代码实现 定义写代码的action action是动作的逻辑抽象,通过将预设的prompt传入llm,来获取输出,并对输出进行格式化 具体的实现如下 定义prompt模版 …

IDEA 开发找到 java-web 发布到 tomcat 的路径

使用 IDEA 开发 java web 应用,有没有遇到需要找到 tomcat 路径的问题 为什么要找 tomcat 路径呢? 拿我的项目来举例,有统一的线上线下 logback.xml 配置,配置时业务、框架日志输出到 file,少量的启动日志输出到 con…

黑马点评项目个人笔记+项目优化调整

博客须知 本篇博客内容来源与黑马点评项目实战篇-16.用户签到-实现签到功能_哔哩哔哩_bilibili,作者对视频内容进行了整合,由于记笔记时图片使用的是本地路径,所以导致博客的图片无法正常显示,如果有图片需求可以下载上方的pdf须…

【SQL每日一练】统计复旦用户8月练题情况

文章目录 题目一、分析二、题解1.使用case...when..then2.使用if 题目 现在运营想要了解复旦大学的每个用户在8月份练习的总题目数和回答正确的题目数情况,请取出相应明细数据,对于在8月份没有练习过的用户,答题数结果返回0. 示例代码&am…