机器学习:深入解析SVM的核心概念【四、软间隔与正则化】

软间隔与正则化

    • 问题一:优化目标函数是如何得到的?得到的过程是怎样的?
    • 问题二:拉格朗日乘子法计算详细过程
    • 问题三:KKT条件求解过程
    • 问题四:结构风险最小化(SRM)的原理

在前面的讨论中,我们一直假定训练样本在样本空间或特征空间中是线性可分的,即存在一个超平面能将不同类的样本完全划分开.然而,在现实任务中往往 很难确定合适的核函数 使得训练样本在特征空间中线性可分;

退一步说,即便恰好找到了某个核函数使训练集在特征空间中线性可分,也很难断定这个貌似线性可分的结果不是由于过拟合所造成的.

问题一:优化目标函数是如何得到的?得到的过程是怎样的?

在这里插入图片描述

软间隔SVM是对传统的硬间隔SVM的扩展,它允许某些数据点违反最初的分类边界。这样做的目的是提高模型对噪声和异常值的鲁棒性,从而获得更好的泛化能力。在这个设置中,优化目标函数的推导过程是这样的:

  1. 软间隔引入:为了应对现实世界数据中的噪声和不完全线性可分的情况,引入软间隔的概念。在硬间隔SVM中,所有数据点都严格满足 y i ( w T x i + b ) ≥ 1 y_i (w^T x_i + b) \geq 1 yi(wTxi+b)1 的约束。在软间隔SVM中,我们允许某些点不满足这个条件,引入松弛变量 ξ i \xi_i ξi 来衡量每个数据点违背间隔的程度。

  2. 优化目标函数:考虑到间隔违规和模型的复杂度,我们希望最小化一个包含正则化项(控制模型复杂度)和损失项(衡量间隔违规)的目标函数。因此,目标函数变为最小化 1 2 ∥ w ∥ 2 \frac{1}{2} \|w\|^2 21w2(正则化项)加上 C ∑ ξ i C \sum \xi_i Cξi(损失项),其中 C C C 是一个正的正则化参数,用于平衡两者之间的重要性。

  3. 调整约束:每个数据点的原始约束 y i ( w T x i + b ) ≥ 1 y_i (w^T x_i + b) \geq 1 yi(wTxi+b)1 被调整为 y i ( w T x i + b ) ≥ 1 − ξ i y_i (w^T x_i + b) \geq 1 - \xi_i yi(wTxi+b)1ξi,同时确保松弛变量 ξ i \xi_i ξi 是非负的。

  4. 替代损失函数:松弛变量 ξ i \xi_i ξi 对应于 ℓ 0 / 1 \ell_0/1 0/1 损失函数的替代。在优化过程中,由于 ℓ 0 / 1 \ell_0/1 0/1 损失函数不是 连续的不易优化,通常会采用其他连续可微的损失函数,如 hinge 损失函数对数 损失函数

  • hinge 损失: l hinge ( z ) = max ⁡ ( 0 , 1 − z ) l_{\text{hinge}}(z) = \max(0, 1 - z) lhinge(z)=max(0,1z);
  • 指数损失(exponential loss): l exp ( z ) = exp ⁡ ( − z ) l_{\text{exp}}(z) = \exp(-z) lexp(z)=exp(z);
  • 对数损失(logistic loss): l log ( z ) = log ⁡ ( 1 + exp ⁡ ( − z ) ) l_{\text{log}}(z) = \log(1 + \exp(-z)) llog(z)=log(1+exp(z)).

三种常见替代损失函数
5. 最终优化问题:考虑到以上的点,我们的最终优化问题形式化为:
minimize w , b , ξ 1 2 ∥ w ∥ 2 + C ∑ i = 1 m ξ i \text{minimize}_{w,b,\xi} \quad \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} \xi_i minimizew,b,ξ21w2+Ci=1mξi
subject to y i ( w T x i + b ) ≥ 1 − ξ i , ξ i ≥ 0 , i = 1 , … , m . \text{subject to} \quad y_i(w^T x_i + b) \geq 1 - \xi_i, \quad \xi_i \geq 0, \quad i=1, \ldots, m. subject toyi(wTxi+b)1ξi,ξi0,i=1,,m.

在这个过程中,软间隔的引入以及对目标函数的修改都是为了使模型更适应实际数据集的复杂性。正则化参数 C C C 的选择变得至关重要,因为它直接影响模型对数据中噪声的容忍程度和防止过拟合的能力。通过合理设置 C C C,模型可以在保持足够间隔的同时,允许某些数据点的违规,从而在保持模型泛化能力的前提下,最小化总体损失。

问题二:拉格朗日乘子法计算详细过程

  1. 定义问题和约束

    • 原始的SVM问题是最大化间隔,等价于最小化 1 2 ∥ w ∥ 2 \frac{1}{2}\|w\|^2 21w2
    • 我们要求每个数据点至少有一个距离超平面的函数间隔1。在软间隔SVM中,我们允许函数间隔小于1,但这种违规要受到惩罚。
    • 引入松弛变量 ξ i \xi_i ξi 来度量第 ( i ) 个数据点的间隔违规程度。
  2. 引入拉格朗日乘子

    • 对每个数据点 ( i ),我们有两个约束:函数间隔 y i ( w T x i + b ) ≥ 1 − ξ i y_i(w^T x_i + b) \geq 1 - \xi_i yi(wTxi+b)1ξi 和松弛变量 ξ i ≥ 0 \xi_i \geq 0 ξi0
    • 为这两个约束引入两组拉格朗日乘子 α i \alpha_i αi μ i \mu_i μi,它们必须满足 α i ≥ 0 \alpha_i \geq 0 αi0 μ i ≥ 0 \mu_i \geq 0 μi0
  3. 构建拉格朗日函数

    • 对于每个数据点 ( i ),对应的拉格朗日函数部分是 α i ( 1 − ξ i − y i ( w T x i + b ) ) \alpha_i (1 - \xi_i - y_i(w^T x_i + b)) αi(1ξiyi(wTxi+b)) μ i ξ i \mu_i \xi_i μiξi
    • 所有数据点的拉格朗日函数相加,我们得到总拉格朗日函数
    • L ( w , b , α , ξ , μ ) = 1 2 ∥ w ∥ 2 + C ∑ i = 1 m ξ i + ∑ i = 1 m α i ( 1 − ξ i − y i ( w T x i + b ) ) − ∑ i = 1 m μ i ξ i L(w, b, \alpha, \xi, \mu) = \frac{1}{2}\|w\|^2 + C\sum_{i=1}^{m} \xi_i + \sum_{i=1}^{m} \alpha_i (1 - \xi_i - y_i(w^T x_i + b)) - \sum_{i=1}^{m} \mu_i \xi_i L(w,b,α,ξ,μ)=21w2+Ci=1mξi+i=1mαi(1ξiyi(wTxi+b))i=1mμiξi
    • 这里 C C C 是一个预先设定的正则化参数,它平衡了间隔的宽度和违规程度。
  4. 拉格朗日对偶问题

    • 通过对 L L L 关于 w w w b b b ξ \xi ξ 求偏导并设为0,我们可以得到 w w w b b b ξ \xi ξ 的表达式,然后将它们从拉格朗日函数中消除,得到只关于 α \alpha α μ \mu μ 的函数。
  1. 对 ( w ) 求偏导
    针对拉格朗日函数中与 w w w 相关的部分 1 2 ∥ w ∥ 2 \frac{1}{2}\|w\|^2 21w2 ∑ i = 1 m α i ( 1 − ξ i − y i ( w T x i + b ) ) \sum_{i=1}^{m} \alpha_i (1 - \xi_i - y_i(w^T x_i + b)) i=1mαi(1ξiyi(wTxi+b)),我们分别对其求偏导。
    首先,对 1 2 ∥ w ∥ 2 \frac{1}{2}\|w\|^2 21w2 求偏导: ∂ L ∂ w = w \frac{\partial L}{\partial w} = w wL=w
    然后,对 ∑ i = 1 m α i ( 1 − ξ i − y i ( w T x i + b ) ) \sum_{i=1}^{m} \alpha_i (1 - \xi_i - y_i(w^T x_i + b)) i=1mαi(1ξiyi(wTxi+b)) 求偏导: ∂ L ∂ w = − ∑ i = 1 m α i y i x i \frac{\partial L}{\partial w} = -\sum_{i=1}^{m} \alpha_i y_i x_i wL=i=1mαiyixi
    最终,令两者相等并设为零,我们有: w − ∑ i = 1 m α i y i x i = 0 w - \sum_{i=1}^{m} \alpha_i y_i x_i = 0 wi=1mαiyixi=0
  2. 对 ( b ) 求偏导
    针对拉格朗日函数中与 ( b ) 相关的部分 ∑ i = 1 m α i ( 1 − ξ i − y i ( w T x i + b ) ) \sum_{i=1}^{m} \alpha_i (1 - \xi_i - y_i(w^T x_i + b)) i=1mαi(1ξiyi(wTxi+b)),我们对其求偏导。
    ∑ i = 1 m α i ( 1 − ξ i − y i ( w T x i + b ) ) \sum_{i=1}^{m} \alpha_i (1 - \xi_i - y_i(w^T x_i + b)) i=1mαi(1ξiyi(wTxi+b)) 求偏导:
    ∂ L ∂ b = − ∑ i = 1 m α i y i \frac{\partial L}{\partial b} = -\sum_{i=1}^{m} \alpha_i y_i bL=i=1mαiyi
    令其等于零,得到:
    − ∑ i = 1 m α i y i = 0 -\sum_{i=1}^{m} \alpha_i y_i = 0 i=1mαiyi=0
  3. ξ \xi ξ 求偏导
    针对拉格朗日函数中与 ξ \xi ξ 相关的部分 C ∑ i = 1 m ξ i − ∑ i = 1 m μ i ξ i C\sum_{i=1}^{m} \xi_i - \sum_{i=1}^{m} \mu_i \xi_i Ci=1mξii=1mμiξi,我们对其求偏导。
    C ∑ i = 1 m ξ i − ∑ i = 1 m α i ( 1 − ξ i − y i ( w T x i + b ) ) − ∑ i = 1 m μ i ξ i C\sum_{i=1}^{m} \xi_i - \sum_{i=1}^{m} \alpha_i (1 - \xi_i - y_i(w^T x_i + b)) - \sum_{i=1}^{m} \mu_i \xi_i Ci=1mξii=1mαi(1ξiyi(wTxi+b))i=1mμiξi 求偏导: ∂ L ∂ ξ i = C − α i − μ i \frac{\partial L}{\partial \xi_i} = C - \alpha_i - \mu_i ξiL=Cαiμi
    令其等于零,得到:
    C − α i − μ i = 0 对所有的 i C - \alpha_i - \mu_i = 0 \quad \text{对所有的} i Cαiμi=0对所有的i

得到结果
w = ∑ i = 1 m α i y i x i w = \sum_{i=1}^{m} \alpha_i y_i x_i w=i=1mαiyixi
∑ i = 1 m α i y i = 0 \sum_{i=1}^{m} \alpha_i y_i = 0 i=1mαiyi=0
C = α i + μ i C = \alpha_i + \mu_i C=αi+μi

  1. 得到对偶优化问题
    • 消除 w w w b b b ξ \xi ξ 后,我们得到对偶问题的最大化问题,仅关于 α \alpha α
      max ⁡ α [ ∑ i = 1 m α i − 1 2 ∑ i , j = 1 m y i y j α i α j x i T x j ] \max_{\alpha} \left[ \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j x_i^T x_j \right] αmax[i=1mαi21i,j=1myiyjαiαjxiTxj]
    • 并且要满足约束 ∑ i = 1 m α i y i = 0 \sum_{i=1}^{m} \alpha_i y_i = 0 i=1mαiyi=0 0 ≤ α i ≤ C 0 \leq \alpha_i \leq C 0αiC

根据KKT(Karush-Kuhn-Tucker)条件,对于每个数据点 x i x_i xi,如果 α i = 0 \alpha_i = 0 αi=0,那么该数据点不会对模型的决策边界造成影响;如果 0 < α i < C 0 < \alpha_i < C 0<αi<C,那么 x i x_i xi 是支持向量,并且处在边界上;如果 α i = C \alpha_i = C αi=C,那么数据点 x i x_i xi 被误分类,或者它恰好在边界的违反侧上。

  1. (\alpha_i = 0) 时:
    • 这意味着对应的数据点 x i x_i xi 不对模型的优化造成任何影响,也就是说它不是支持向量。这些点要么被正确分类远离决策边界 ,要么在软间隔SVM中,这些点虽然被误分类但由于它们的影响在优化过程中被允许忽略(即对总损失的贡献被限制在了可接受的成本 C C C 内)。
  2. (0 < \alpha_i < C) 时:
    • 这表示数据点 x i x_i xi 恰好在边界上,即它是一个 支持向量 。在SVM中,这些支持向量决定了最终的决策边界。它们恰好位于或者非常接近我们希望数据点分界的边界线。
  3. (\alpha_i = C) 时:
    • 这表示数据点 x i x_i xi 在优化过程中发挥了最大的影响,可能是因为它被误分类,或者即便它被正确分类,也位于边界内侧 紧邻决策边界 的地方。在软间隔SVM中,这代表该点被允许违反最大间隔距离,但是由于其 α i \alpha_i αi 值达到了上限 C C C,这种违反的程度受到了约束。

当我们将拉格朗日函数 L ( α , μ ) L(\alpha, \mu) L(α,μ) 展开后,我们需要消除 w w w 和 (b),以及处理约束条件:

  1. 消除 w w w 和 (b)

    我们已经有了 w = ∑ i = 1 m α i y i x i w = \sum_{i=1}^{m} \alpha_i y_i x_i w=i=1mαiyixi 和约束条件 ∑ i = 1 m α i y i = 0 \sum_{i=1}^{m} \alpha_i y_i = 0 i=1mαiyi=0 。我们代入 w w w 的表达式和约束条件:

    L ( α , μ ) = 1 2 ∥ ∑ i = 1 m α i y i x i ∥ 2 + C ∑ i = 1 m ( C − α i − μ i ) + ∑ i = 1 m α i ( 1 − ( C − α i − μ i ) − y i ( ( ∑ j = 1 m α j y j x j ) T x i ) ) − ∑ i = 1 m μ i ( C − α i − μ i ) \begin{align*} L(\alpha, \mu) &= \frac{1}{2}\left\| \sum_{i=1}^{m} \alpha_i y_i x_i \right\|^2 + C\sum_{i=1}^{m} (C - \alpha_i - \mu_i) \\ &\quad + \sum_{i=1}^{m} \alpha_i \left(1 - (C - \alpha_i - \mu_i) - y_i\left(\left(\sum_{j=1}^{m} \alpha_j y_j x_j\right)^T x_i\right)\right) \\ &\quad - \sum_{i=1}^{m} \mu_i (C - \alpha_i - \mu_i) \end{align*} L(α,μ)=21 i=1mαiyixi 2+Ci=1m(Cαiμi)+i=1mαi 1(Cαiμi)yi (j=1mαjyjxj)Txi i=1mμi(Cαiμi)

    我们可以进一步化简上述表达式。

  2. 化简 ∥ ∑ i = 1 m α i y i x i ∥ 2 \| \sum_{i=1}^{m} \alpha_i y_i x_i \|^2 i=1mαiyixi2【内积展开】

    注意到 ∥ ∑ i = 1 m α i y i x i ∥ 2 \| \sum_{i=1}^{m} \alpha_i y_i x_i \|^2 i=1mαiyixi2 可以写为 ( ∑ i = 1 m α i y i x i ) T ( ∑ i = 1 m α i y i x i ) (\sum_{i=1}^{m} \alpha_i y_i x_i)^T (\sum_{i=1}^{m} \alpha_i y_i x_i) (i=1mαiyixi)T(i=1mαiyixi)。展开后得到:

    ∥ ∑ i = 1 m α i y i x i ∥ 2 = ( ∑ i = 1 m α i y i x i ) T ( ∑ i = 1 m α i y i x i ) = ∑ i = 1 m ∑ j = 1 m α i α j y i y j x i T x j \| \sum_{i=1}^{m} \alpha_i y_i x_i \|^2 = (\sum_{i=1}^{m} \alpha_i y_i x_i)^T (\sum_{i=1}^{m} \alpha_i y_i x_i) = \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j x_i^T x_j i=1mαiyixi2=(i=1mαiyixi)T(i=1mαiyixi)=i=1mj=1mαiαjyiyjxiTxj

  3. 代入约束条件 ∑ i = 1 m α i y i = 0 \sum_{i=1}^{m} \alpha_i y_i = 0 i=1mαiyi=0

    由于约束条件是 ∑ i = 1 m α i y i = 0 \sum_{i=1}^{m} \alpha_i y_i = 0 i=1mαiyi=0,我们可以将 μ \mu μ 表达为 μ i = C − α i \mu_i = C - \alpha_i μi=Cαi

  4. 代入上述结果到拉格朗日函数

    代入上述结果后,我们得到:

L ( α ) = ∑ i = 1 m α i − 1 2 ∑ i , j = 1 m α i α j y i y j x i T x j \begin{align*} L(\alpha) &= \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j x_i^T x_j \end{align*} L(α)=i=1mαi21i,j=1mαiαjyiyjxiTxj
以上步骤消除了 w w w 和 (b),并将 L ( α , μ ) L(\alpha, \mu) L(α,μ) 表达为关于 α \alpha α 的函数。

  1. 最大化 L ( α ) L(\alpha) L(α)

    我们的目标是最大化 L ( α ) L(\alpha) L(α),即求解:

max ⁡ α [ ∑ i = 1 m α i − 1 2 ∑ i , j = 1 m y i y j α i α j x i T x j ] \max_{\alpha} \left[ \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j x_i^T x_j \right] αmax[i=1mαi21i,j=1myiyjαiαjxiTxj]

并且要满足约束条件:

{ ∑ i = 1 m α i y i = 0 0 ≤ α i ≤ C , i = 1 , 2 , . . . , m \begin{cases} \sum_{i=1}^{m} \alpha_i y_i = 0 \\ 0 \leq \alpha_i \leq C, \quad i = 1, 2, ..., m \end{cases} {i=1mαiyi=00αiC,i=1,2,...,m

问题三:KKT条件求解过程

和前面相比,两者唯一差别就在约束条件不同;
带有软间隔的KKT条件
了解KKT条件的推导过程首先要理解拉格朗日乘子法在处理优化问题时如何使用。在软间隔支持向量机中,我们希望最小化以下拉格朗日函数:

L ( w , b , α , ξ , μ ) = 1 2 ∥ w ∥ 2 + C ∑ i = 1 m ξ i + ∑ i = 1 m α i ( 1 − ξ i − y i ( w T x i + b ) ) − ∑ i = 1 m μ i ξ i L(w, b, \alpha, \xi, \mu) = \frac{1}{2}\|w\|^2 + C\sum_{i=1}^{m} \xi_i + \sum_{i=1}^{m} \alpha_i (1 - \xi_i - y_i(w^T x_i + b)) - \sum_{i=1}^{m} \mu_i \xi_i L(w,b,α,ξ,μ)=21w2+Ci=1mξi+i=1mαi(1ξiyi(wTxi+b))i=1mμiξi

其中, α \alpha α μ \mu μ 是拉格朗日乘子, ξ \xi ξ 是松弛变量。

这个函数结合了目标函数和对每个样本 x i x_i xi 的约束,其中 y i ( w T x i + b ) ≥ 1 − ξ i y_i(w^T x_i + b) \geq 1 - \xi_i yi(wTxi+b)1ξi。由于 ξ i \xi_i ξi 允许一定的分类违规,我们加入正则化参数 C C C 以限制这种违规。

KKT条件是最优解必须满足的一组条件,它们来自拉格朗日函数 L L L 关于每个变量的偏导数等于零的必要条件。下面是KKT条件:

  1. α i ≥ 0 \alpha_i \geq 0 αi0 μ i ≥ 0 \mu_i \geq 0 μi0:这确保了拉格朗日乘子是非负的。在优化问题中,拉格朗日乘子用来 加权约束条件 ,而这个权重不能是负的。
  2. y i f ( x i ) − 1 + ξ i ≥ 0 y_i f(x_i) - 1 + \xi_i \geq 0 yif(xi)1+ξi0 :这是原始问题的约束,表示每个数据点的函数间隔至少为1,满足 1 − ξ i 1 - \xi_i 1ξi(如果数据点被正确分类且在正确的间隔边界上或者超出间隔边界)。如果 ξ i > 0 \xi_i > 0 ξi>0,则该数据点有分类违规
  3. α i ( y i f ( x i ) − 1 + ξ i ) = 0 \alpha_i(y_i f(x_i) - 1 + \xi_i) = 0 αi(yif(xi)1+ξi)=0互补松弛性条件。如果 α i > 0 \alpha_i > 0 αi>0,则对应的 y i f ( x i ) − 1 + ξ i y_i f(x_i) - 1 + \xi_i yif(xi)1+ξi 必须等于0。这意味着对于非零 α i \alpha_i αi 的数据点,它们要么恰好在决策边界上,要么就是被 错误分类 的点。
  4. ξ i ≥ 0 \xi_i \geq 0 ξi0松弛变量的非负性,允许某些数据点违背硬间隔条件。
  5. μ i ξ i = 0 \mu_i \xi_i = 0 μiξi=0:这是对 μ \mu μ互补松弛性条件,表明如果松弛变量 ξ i > 0 \xi_i > 0 ξi>0,即有分类违规,那么对应的 μ i \mu_i μi 必须是 0,反之亦然。

通过拉格朗日函数的偏导数等于零的条件和这些KKT条件,我们能够定义出最优化问题的对偶形式,这在数值上往往更易于求解。对偶问题通常涉及 仅有 α \alpha α最大化问题 ,而不直接求解 w w w b b b,这简化了问题的复杂度,特别是当用核技巧将其扩展到高维空间时。

在实际算法实现中,如SMO算法,这种对偶形式是解决SVM最优化问题的关键。

问题四:结构风险最小化(SRM)的原理

结构风险最小化(SRM)的原理,它是支持向量机(SVM)理论的一个核心概念。结构风险最小化致力于在保证模型复杂度的同时 最小化训练误差 ,以达到良好的泛化效果。文中提到了经验风险(即模型在训练集上的误差)和模型的复杂度两个部分。具体来说,它通过一个优化问题来平衡这两者:

  • 经验风险:是模型在训练数据上的 损失函数值的总和
  • 正则化项:是用于控制 模型复杂度 的项,通常是模型参数的某种形式(如权重向量的范数)。

优化目标是最小化这两个量的组合,通常表示为:

min ⁡ f Ω ( f ) + C ∑ i = 1 m L ( f ( x i ) , y i ) \min_f \quad \Omega(f) + C \sum_{i=1}^{m} L(f(x_i), y_i) fminΩ(f)+Ci=1mL(f(xi),yi)

这里, Ω ( f ) \Omega(f) Ω(f) 是正则化项, L ( f ( x i ) , y i ) L(f(x_i), y_i) L(f(xi),yi) 是损失函数, C C C 是控制两者权重的正则化参数。

了解SRM的概念可以帮助你更好地理解SVM模型的目标和设计背后的 动机 ,但如果你只是想实现算法而不关心其理论基础,你可以选择不深入这部分内容。然而,如果你打算深入理解SVM的工作原理或者进行算法的改进,那么对SRM的理解是很重要的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/318383.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于 Spring Boot 博客系统开发(五)

基于 Spring Boot 博客系统开发&#xff08;五&#xff09; 本系统是简易的个人博客系统开发&#xff0c;为了更加熟练地掌握 SprIng Boot 框架及相关技术的使用。&#x1f33f;&#x1f33f;&#x1f33f; 基于 Spring Boot 博客系统开发&#xff08;四&#xff09;&#x1f…

[机器学习系列]深入解析K-Means聚类算法:理论、实践与优化

目录 一、KMeans (一)Kmeans简介 (二)Kmeans作用和优点 (三)Kmeans局限和缺点 (四)Kmeans步骤 (五)如何选取最佳的K值的三种方法 (六)手肘法和目标函数的变化两种确定K值方法的区别 (七)如何选取第一次迭代的K个类中心------KMeans方法 (八)KMeans的常用参数介绍 二、…

LeetCode 139 —— 单词拆分

阅读目录 1. 题目2. 解题思路3. 代码实现 1. 题目 2. 解题思路 定义 d p [ i ] dp[i] dp[i] 表示 s [ 0 , i ] s[0, i] s[0,i] 是否可以被字典中出现的单词拼接&#xff0c;那么状态转移方程为&#xff1a; d p [ i ] t r u e &#xff0c;如果存在任意 j ∈ [ 0 , i − 1…

智慧光伏电站管理系统构建与功能分析

在全球光伏产业蓬勃发展背景下&#xff0c;我国光伏制造以及光伏发电规模均位于世界首位。但是由于集中式光伏电站投资大、建设周期长、占地面积大。出于土地成本考虑&#xff0c;电站通常地处偏远地区&#xff0c;给运维管理带来了诸多不便。随着互联网、云计算、大数据、人工…

Mac环境下ollama部署和体验

欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码)&#xff1a;https://github.com/zq2599/blog_demos 关于ollama ollama和LLM&#xff08;大型语言模型&#xff09;的关系&#xff0c;类似于docker和镜像&#xff0c;可以在ollama服务中管理和运行各种LLM&…

【算法基础实验】图论-最小生成树Prim的延迟实现

最小生成树-Prim的延迟实现 理论基础 树的基本性质 用一条边连接树中的任意两个顶点都会产生一个新的环&#xff1b; 从树中删去一条边将会得到两棵独立的树。 切分定理的定义 定义。图的一种切分是将图的所有顶点分为两个非空且不重叠的两个集合。横切边 是一条连接两个属…

python学习笔记B-16:序列结构之字典--字典的遍历与访问

下面是字典的访问和遍历方法&#xff1a; d {10:"hello",20:"python",30:"world"} print(d[10],"--",d[20],"--",d[30]) print(d.get(10)) print("以上两种访问方式的区别是&#xff0c;d[key]若键是空值&#xff0c…

c#创建新项目

确保已安装.NET Core SDK。&#xff08;visual studio installer中可安装&#xff09; cmd中先引用到文件夹目录下。 mkdir MyConsoleApp MyConsoleApp是项目文件夹的名字。 mkdir 是一个命令行工具&#xff0c;用于在文件系统中创建新的目录&#xff08;文件夹&#xff09;…

C 语言笔记:字符串处理函数

一、获取字符串长度函数 头文件&#xff1a;#include <string.h> 函数定义&#xff1a;size_t strlen(const char *s); 函数功能&#xff1a; 测字符指针 s 指向的字符串中字符的个数&#xff0c;不包括’\0’ 返回值&#xff1a;字符串中字符个数 #include <stdio.…

DRF版本组件源码分析

DRF版本组件源码分析 在restful规范中要去&#xff0c;后端的API中需要体现版本。 3.6.1 GET参数传递版本 from rest_framework.versioning import QueryParameterVersioning单视图应用 多视图应用 # settings.pyREST_FRAMEWORK {"VERSION_PARAM": "versi…

Android(Java)项目支持Kotlin语言开发

Android&#xff08;Java&#xff09;项目通过相关Kotlin设置后&#xff0c;允许同时使用Java语言和Kotlin语言进行开发代码的。 示例环境&#xff1a; Android Studio Giraffe | 2022.3.1 Patch 3 Java 8 Kotlin 1.9.20 设置Kotlin选项&#xff1a; 第一步&#xff1a;在项…

区块链 | IPFS:Merkle DAG(进阶版)

&#x1f98a;原文&#xff1a;Merkle DAGs: Structuring Data for the Distributed Web &#x1f98a;写在前面&#xff1a;本文属于搬运博客&#xff0c;自己留存学习。 1 Merkle DAG 当我们在计算机上表示图时&#xff0c;必须通过提供节点和边的具体表示来编码我们的数据…

笔记-PPT绘图导出高清无失真图片

问题描述&#xff1a;PPT绘图已经用了高清图&#xff08;jpg、tif格式&#xff09;&#xff0c;但论文图片还是不清晰&#xff0c;打印出来还是有点糊 以下是PPT导出高清不失真图片&#xff08;emf格式&#xff09;的具体描述。 目录 一、绘图工具二、操作步骤 一、绘图工具 …

JAVA面试题---WEB部分

网络通讯 TCP与UDP TCP(Transmission Control Protocol 传输控制协议)是一种面向连接(连接导向)的、 可靠的、 基于 IP 的传输层协议。 UDP 是 User Datagram Protocol 的简称&#xff0c;中文名是用户数据报协议&#xff0c;是 OSI 参考模 型中的传输层协议&#xff0c;它是…

UE5入门学习笔记(六)——编译低版本插件

对于有些低版本的插件&#xff0c;可以通过此方法自己编译到高版本而无需等待插件作者更新 使用工具&#xff1a;如图所示 步骤1&#xff1a;打开cmd&#xff0c;并使用cd命令切换到此目录 步骤2&#xff1a;输入如下指令 RunUAT.bat BuildPlugin -Plugin“路径1” -Package“…

WPF基础应用

WPF参考原文 MVVM介绍 1.常用布局控件 1.1 布局控件 WPF&#xff08;Windows Presentation Foundation&#xff09;提供了多种布局容器来帮助开发者设计用户界面&#xff0c;以下是一些常用的布局&#xff1a; Grid: Grid是最常用的布局容器之一&#xff0c;它允许你通过定…

类和对象【四】运算符重载

文章目录 运算符重载的概念运算符重载&#xff08;函数&#xff09;返回值类型&#xff1a;任意类型函数名&#xff1a;operator已有操作符 运算符重载&#xff08;函数&#xff09;的特点和注意点3个比较特殊的运算符重载赋值运算符&#xff08;&#xff09;重载返回值类型和返…

人工智能论文:BERT和GPT, GPT-2, GPT-3 的简明对比和主要区别

在BERT的论文里面&#xff1a; 2018.10 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding&#xff0c;BERT已经解释了BERT&#xff0c;GPT&#xff0c;ELMo的区别。 *ELMo为双向RNN&#xff0c;请忽略。 主要区别&#xff1a; BERT使用的是…

15、ESP32 Wifi

ESP32 的 WIFI 功能是模块内置的&#xff0c;通过 ESP32 的基础库调用一些函数就可以轻松使用它。 Wifi STA 模式&#xff1a; 让 ESP32 连接附近 WIFI&#xff0c;可以上网访问数据。 // 代码显示搜索连接附近指定的 WIFI // 通过 pin 按键可断开连接#include <WiFi.h>…

前端入门:HTML(css轮廓,填充,宽高)

1.CSS轮廓 注意&#xff1a; outline中&#xff0c;out-style是必须要设置的&#xff0c;格式为&#xff1a; outline-style一共有以下的几个值&#xff1a; 2.CSS填充属性 这是一个用于在一个元素的内容周围产生空间&#xff0c;也就是边框内到白框外之间的距离&#xff0c;…