开源模型应用落地-LangChain高阶-Tools工具-集成agents(四)

一、前言

    LangChain 的 tools 是一系列关键组件,它们提供了与外部世界进行交互的能力。通过适当的使用这些组件,可以简单实现如执行网络搜索以获取最新信息、调用特定的 API 来获取数据或执行特定的操作、与数据库进行交互以获取存储的信息等需求。

    本章基于agents进一步串联工具(tools ),从而将大语言模型的能力和本地、云服务能力结合。


二、术语

2.1. agent

    是 LangChain 中的代理模块,它可以使用语言模型(LLM)动态地调用行为链(Chains),根据用户的输入调用不同的行为。代理可以访问单一工具,并根据用户输入确定要使用的工具,也可以使用多个工具,并使用一个工具的输出作为下一个工具的输入。


三、前提条件 

3.1. 基础环境

  1.  操作系统:不限

3.2. 安装虚拟环境

conda create --name langchain python=3.10
conda activate langchain
pip install langchain langchain-openai

3.3. 创建Wolfram账号

开源模型应用落地-LangChain高阶-Tools工具-WolframAlpha(二)

3.4. 创建serper账号

开源模型应用落地-LangChain高阶-Tools工具-GoogleSerperAPIWrapper(三)


四、技术实现

4.1.询问广州白云山位置

# -*-  coding = utf-8 -*-
import json
import os
import warnings
import traceback
from langchain.agents import initialize_agent, Tool, AgentType
from langchain_community.utilities.wolfram_alpha import WolframAlphaAPIWrapper
from langchain_openai import ChatOpenAI
from langchain_community.utilities import GoogleSerperAPIWrapperwarnings.filterwarnings("ignore")os.environ["SERPER_API_KEY"] = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
os.environ["WOLFRAM_ALPHA_APPID"] = "xxxxxx-xxxxxx"API_KEY = "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
os.environ["OPENAI_API_KEY"] = API_KEYdef query_location(region):# print(f'region: {region}')search = GoogleSerperAPIWrapper(type="places")results = search.results(region)# print(f'results: {results}')try:places = results['places']# places_object = json.loads(places)if len(places) > 0:place = places[0]address = place['address']latitude = place['latitude']longitude = place['longitude']print(f'address: {address}, latitude: {latitude}, longitude: {longitude}')return addresselse:return 'unknown'except Exception as e:traceback.print_exc()return 'unknown'def mathematical_calculations(info):wolfram = WolframAlphaAPIWrapper()result = wolfram.run(info)return resulttools = [Tool(name = "query_location",func=query_location,description="This function is used to query the location of a specified region, with the input parameter being the region"),Tool(name = "mathematical_calculations",func=mathematical_calculations,description="This function is used for mathematical calculations, and the input parameters are mathematical expressions")
]if __name__ == '__main__':llm = ChatOpenAI(model_name='gpt-3.5-turbo-1106', temperature=0.9, max_tokens=1024)agent = initialize_agent(tools,llm,agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,max_iterations=3,verbose=True)result = agent.run('广州白云山在哪里?')print(f'result: {result}')

调用结果:

4.2.求解数学表达式

# -*-  coding = utf-8 -*-
import json
import os
import warnings
import traceback
from langchain.agents import initialize_agent, Tool, AgentType
from langchain_community.utilities.wolfram_alpha import WolframAlphaAPIWrapper
from langchain_openai import ChatOpenAI
from langchain_community.utilities import GoogleSerperAPIWrapperwarnings.filterwarnings("ignore")os.environ["SERPER_API_KEY"] = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
os.environ["WOLFRAM_ALPHA_APPID"] = "xxxxxx-xxxxxx"API_KEY = "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
os.environ["OPENAI_API_KEY"] = API_KEYdef query_location(region):# print(f'region: {region}')search = GoogleSerperAPIWrapper(type="places")results = search.results(region)# print(f'results: {results}')try:places = results['places']# places_object = json.loads(places)if len(places) > 0:place = places[0]address = place['address']latitude = place['latitude']longitude = place['longitude']print(f'address: {address}, latitude: {latitude}, longitude: {longitude}')return addresselse:return 'unknown'except Exception as e:traceback.print_exc()return 'unknown'def mathematical_calculations(info):wolfram = WolframAlphaAPIWrapper()result = wolfram.run(info)return resulttools = [Tool(name = "query_location",func=query_location,description="This function is used to query the location of a specified region, with the input parameter being the region"),Tool(name = "mathematical_calculations",func=mathematical_calculations,description="This function is used for mathematical calculations, and the input parameters are mathematical expressions")
]if __name__ == '__main__':llm = ChatOpenAI(model_name='gpt-3.5-turbo-1106', temperature=0.9, max_tokens=1024)agent = initialize_agent(tools,llm,agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,max_iterations=3,verbose=True)result = agent.run('求解:2x + 5 = -3x + 7')print(f'result: {result}')

调用结果:


五、附带说明

5.1.AgentType取值

  • AgentType.ZERO_SHOT_REACT_DESCRIPTION表示零样本反应式描述代理,它利用 ReAct 框架根据工具的描述来决定使用哪个工具。这种代理可以使用多个工具,但需要为每个工具提供描述信息。工具的选择单纯依靠工具的描述信息。
  • AgentType.SELF_ASK_WITH_SEARCH表示 Self-Ask with Search 代理类型。这种代理使用一个名为“中间应答”的工具,该工具能够查找问题的真实答案。它的工作原理是利用网络搜索 API 进行搜索,并将搜索结果作为中间答案,然后继续进行提问和搜索,直到找到最终的答案。
  • AgentType.REACT_DOCSTORE使用 ReAct 框架与文档存储进行交互。适用于需要从文档存储中获取信息并进行处理的任务。通过使用“Search”和“Lookup”工具,它可以实现对文档的搜索和查找功能,帮助用户快速找到所需的信息。
  • AgentType.CONVERSATIONAL_REACT_DESCRIPTION主要用于对话场景。它使用 ReAct 框架来决定使用哪个工具,并使用内存来记忆先前的对话交互。这种代理类型的设计旨在使代理能够进行对话并提供帮助。通过使用 ReAct 框架,它可以根据对话的上下文和需求选择合适的工具来执行任务,并将工具执行的结果作为上下文反馈给代理,以便其继续进行推理和回答。

5.2.Agent的执行流程

  1. 接收用户输入:接收用户的输入,并将其作为执行的起点。
  2. 规划动作:根据用户输入和当前状态,agent 会规划下一步的动作。这可能包括选择使用哪个工具、确定工具的输入等。
  3. 执行动作:使用所选的工具执行动作,并记录动作的结果。
  4. 处理结果:处理动作的结果,并根据结果决定下一步的动作。
  5. 重复步骤:不断重复上述步骤,直到达到最终的目标或满足特定的条件。

    注意:具体的执行流程可能因 agent 的类型和配置而有所不同。

5.3.注意事项

  1. 工具选择和配置:要确保选择合适的工具,并正确配置它们。
  2. 输入处理:仔细处理用户输入,确保其清晰和准确。
  3. 工具依赖:注意工具之间的依赖关系,避免不必要的冲突。
  4. 性能和效率:关注执行过程中的性能和效率,优化可能的瓶颈。
  5. 错误处理:做好错误处理,应对可能出现的异常情况。
  6. 环境适应性:根据不同的应用场景,调整 Agent 的行为和策略。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/319565.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

图像处理的一些操作(1)

图像处理 1.安装PIL,skimage库1.1导入skimage库中的oi模块和data模块 2.读取图像文件2.1读取图像文件2.2 以灰度模式读取图像2.3 查看示例图像的目录路径2.4 读取chelsea图片2.5 加载示例图片并保存2.6 获得加载图片的信息2.6.1 输出图片类型2.6.2 输出图片尺寸2.6.…

idea生成双击可执行jar包

我这里是一个生成xmind,解析sql的一个main方法,可以通过配置文件来修改有哪些类会执行 我们经常会写一个处理文件的main方法,使用时再去寻找,入入会比较麻烦,这里就可以把我们写过的main方法打成jar包,放到指定的目录来处理文件并生成想要的结果 1.写出我们自己的main方法,本地…

Reactor模型详解

目录 1.概述 2.Single Reactor 3.muduo库的Multiple Reactors模型如下 1.概述 维基百科对Reactor模型的解释 The reactor design pattern is an event handling pattern for handling service requests delivered concurrently to a service handler by one or more inputs.…

《ElementUI 基础知识》el-tabs header 监听鼠标中键滚动时左右滑动(ElementPlus同样适用)

前言 收到需求,可监听 el-tabs 头在鼠标 hover 时。滑动鼠标中键,可左右滑动! 效果 鼠标中键上下滑动时;向上滑,向左移动;向下滑,向右移动; 实现 代码56 - 60行,添加…

服务器IP选择

可以去https://ip.ping0.cc/查看IP的具体情况 1.IP位置--如果是国内用,国外服务器的话建议选择日本,香港这些比较好,因为它们离这里近,一般延时低(在没有绕一圈的情况下)。 不过GPT的话屏蔽了香港IP 2. 企…

【数学建模】矩阵微分方程

一、说明 我相信你们中的许多人都熟悉微分方程,或者至少知道它们。微分方程是数学中最重要的概念之一,也许最著名的微分方程是布莱克-斯科尔斯方程,它控制着任何股票价格。 ​​ 股票价格的布莱克-斯科尔斯模型 微分方程可以由数学中的许多…

【Python项目】基于DJANGO的【医院体检预约系统】

技术简介:使用Python技术、DJANGO框架、MYSQL数据库等实现。 系统简介:系统采用了在线预约和挂号的方式,用户可以通过网站进行预约和挂号操作。同时,系统还提供了医生的详细介绍和评价,方便用户选择医生。 研究背景&a…

Linux系统编程--信号与管道

1、信号与管道是什么? 首先了解信号与管道的意义,我们需要了解Linux系统中进程之间是如何通信的。Linux操作系统下,以进程为单位来分配或者管理资源,进程之间不能直接访问资源,因此,要求进程间的资源和信息…

word中取消分页符或分段符前后的空格

在Word中,有时候,我们添加分页符后,从分页符后面的文字就全部掉到了下一页,那么如何避免呢? 选择word选项--高级,然后下滑到下面,将“取消分页符或分段符前后的空格”选中,如下图所…

【Linux】进程间通信 - 管道

文章目录 1. 进程间通信介绍1.1 进程间通信目的1.2 进程间通信发展1.3 进程间通信分类 2. 管道2.1 什么是管道2.2 匿名管道2.3 用 fork 来共享管道原理2.4 站在文件描述符角度 - 深入理解管道2.5 站在内核角度 - 管道本质2.6 管道读写规则2.7 管道特点 3. 命名管道3.1 匿名管道…

C 408—《数据结构》图、查找、排序专题考点(含解析)

目录 Δ前言 六、图 6.1 图的基本概念 6.2 图的存储及基本操作 6.3 图的遍历 6.4 图的应用 七、查找 7.2 顺序查找和折半查找 7.3 树型查找 7.4 B树和B树 7.5 散列表 八、排序 8.2 插入排序 8.3 交换排序 8.4 选择排序 8.5 归并排序和基数排序 8.6 各种内部排序算法的比较及…

Meta Llama 3 使用 Hugging Face 和 PyTorch 优化 CPU 推理

原文地址:meta-llama-3-optimized-cpu-inference-with-hugging-face-and-pytorch 了解在 CPU 上部署 Meta* Llama 3 时如何减少模型延迟 2024 年 4 月 19 日 万众期待的 Meta 第三代 Llama 发布了,我想确保你知道如何以最佳方式部署这个最先进的&…

堆栈打印跟踪Activity的启动过程(基于Android10.0.0-r41),framework修改,去除第三方app的倒计时页面

文章目录 堆栈打印跟踪Activity的启动过程(基于Android10.0.0-r41),framework修改,去除第三方app的倒计时页面1.打印异常堆栈2.去除第三方app的倒计时页面3.模拟点击事件跳过首页进入主页 堆栈打印跟踪Activity的启动过程(基于Android10.0.0-r41)&#x…

UNI-APP_拨打电话权限如何去掉,访问文件权限关闭

uniapp上架过程中一直提示:允许“app名”拨打电话和管理通话吗? uniapp配置文件:manifest.json “permissionPhoneState” : {“request” : “none”//拨打电话权限关闭 }, “permissionExternalStorage” : {“request” : “none”//访…

深度解析Java 9核心新特性

码到三十五 &#xff1a; 个人主页 < 免责声明 > 避免对文章进行过度解读&#xff0c;因为每个人的知识结构和认知背景都不同&#xff0c;没有一种通用的解决方案。对于文章观点&#xff0c;不必急于评判。融入其中&#xff0c;审视自我&#xff0c;尝试从旁观者角度认清…

ruoyi漏洞总结

若依识别 黑若依 :icon hash"-1231872293 绿若依 :icon hash"706913071” body" 请通过前端地址访 " body" 认证失败&#xff0c;无法访问系统资源 " 如果页面访问显示不正常&#xff0c;可添加默认访问路径尝试是否显示正常 /login?redi…

.net6 webapi 部署到IIS

一、发布.net6 webapi 项目 1.1 visual studio 2022右键发布到文件夹。 二、增加IIS容器 2.1 控制面板 2.2 启用或关闭Windows功能 3.3 勾选Internet Information Services,点击确定进行安装 三、部署webapi到IIS 3.1 安装 dotnet-hosting-6.0.29-win.exe 3.2 创建应用…

基于高德 API 的自动获取气候数据的 Python 脚本

文章目录 高德申请 Key脚本介绍运行结果示例 源代码&#xff1a; https://github.com/ma0513207162/PyPrecip。pyprecip\reading\read_api.py 路径下。 项目介绍&#xff1a;PyPrecip 是一个专注于气候数据处理的 Python 库&#xff0c;旨在为用户提供方便、高效的气候数据处理…

思考题 —— Windows 登录密码

1.windows登录的明文密码&#xff0c;存储过程是怎么样的&#xff1f;密文存放在哪个文件下&#xff1f;该文件是否可以打开&#xff0c;并且查看到密文&#xff1f; 系统通过保存密码的哈希值来确保安全性&#xff0c;进行加密存储的方法通常为NTLM或Kerberos身份认证协议。该…

2024年第七届大数据技术国际会议(ICBDT 2024)即将召开!

2024年第七届大数据技术国际会议&#xff08;ICBDT 2024&#xff09;将于2024年9月20-22日在中国杭州的浙江工商大学举行。数据驱动未来&#xff0c;技术引领潮流。从数据挖掘算法的优化&#xff0c;到数据处理速度的提升&#xff0c;再到数据安全与隐私保护的进步&#xff0c;…