【C++】详解STL的容器之一:list

目录

简介

初识list

模型

list容器的优缺点

list的迭代器

常用接口介绍

获取迭代器

begin

end

empty

size

front

back

insert

push_front

pop_front

push_back

pop_back

clear

源代码思路

节点设计

迭代器的设计

list的设计

 begin()

end()

空构造

insert()

push_back

模拟实现

节点设计

迭代器设计

list设计

框架

获取迭代器

空构造

insert

erase

赋值重载

其他接口


简介

C++的STL有六大组件:仿函数空间配置器算法容器迭代器配接器。list属于容器的一种。

list的设计使用了模板,是一种泛型编程。


初识list

模型

list是带哨兵位的双向循环链表

链表是由一个一个的节点通过指针链接起来的。list的节点设计:prev指针指向前一个节点,next指针指向下一个节点,data储存数据。如下图

而list想要实现双向循环链表,只需用一个指针指向不储存数据的节点——哨兵位节点或头节点。让哨兵位节点将整条链表首尾相连。哨兵位的next是链表的头节点,哨兵位的prev是链表的尾节点,如下图

list容器的优缺点

优点:头部插入,头部删除,尾部插入,尾部删除的时间复杂度位O(1)。list的指针是一直指向哨兵位节点的,通过哨兵位节点能找到链表的头节点和尾节点,从而实现头插,头删,尾插,尾删操作。

缺点:对链表中的数据进行排序的时间复杂度会很高。找链表中的某一个数据时,需要遍历链表。

list的迭代器

list的每个节点在内存中储存不是连续的

普通的指针不能完成对链表的遍历——加加指针不能使指针指向下一个节点,减减指针不能使指针指向上一个节点。指针的解引用不能完成对数据存取——普通指针解引用是整个节点,而不是节点里存的数据。

所以不能用普通指针做list的迭代器。应该对普通指针进行封装将封装之后的普通指针作为list的迭代器。该迭代器能完成链表的遍历,数据的存取等操作。

具体怎样封装,下面介绍源代码思路和模拟实现时会详细讲解

迭代器失效:把迭代器指向的节点删除掉,会让该迭代器失效,类似于野指针的问题。在迭代器指向节点的前面或后面插入节点,不会使迭代器失效。


常用接口介绍

获取迭代器

begin

返回哨兵位前一个节点的位置

end

返回哨兵位节点的位置

empty

检测list是否为空,是返回true,否则返回false

size

返回list中有效节点的个数

front

返回list的第一个节点中值的引用

back

返回list的最后一个节点中值的引用

insert

在list的 position 迭代器指向的节点之前插入值为val的节点,返回新插入节点的迭代器

push_front

在链表的头部插入一个值为val的节点

pop_front

删除头部位置的节点

erase

删除position迭代器指向的节点,或删除从first到last迭代器区间的节点,返回下一个位置的迭代器

push_back

在链表的尾部插入值为val的节点

pop_back

删除最后一个节点

clear

删除所有有效节点

源代码思路

下面内容参考侯捷老师《STL源码剖析》

源代码中涉及空间配置器的部分不做重点讲解,只需知道空间配置器是为了给节点list申请空间的即可。

小编摘抄部分源码,带大家了解list设计的大概框架。具体实现的细节在模拟实现时讲解

节点设计

template <class T>
struct __list_node 
{typedef void* void_pointer;void_pointer* prev;void_pointer* next;T data;}

struct在C语言中是结构体,在C++中是类。用struct封装不加访问限定符默认成员是公有的。迭代器和链表需要访问节点的数据,设计成共有是为了方便访问。设计成私有需要声明友元。

prevnext的指针是void*类型是因为不知道数据的类型,源码在实现其他接口时会把void*进行强转。和下面代码的设计是等价的

__list_node<T>* prev;   __list_node<T>* next;

data是用来储存数据的

迭代器的设计

template <class T, class Ref, class Ptr> 
struct __list_iterator  
{typedef __list_iterator<T, T&, T*> iterator;typedef __list_iterator<T, Ref, Ptr> self;typedef T value_type;typedef Ptr pointer;typedef Ref reference;typedef __list_node<T>* link_type;link_type node; //节点指针  核心数据//运算符重载,为了让node能像普通指针一样//解引用重载reference operator*()const //Ref{return (*node).data;}//->运算符重载pointer operator->() const  //Ptr{return &(operator*());}//++运算符重载.....//--运算符重载....//==运算符重载....//......
}

成员全部共有,方便list访问

RefPtr两个模板参数是为了区分普通迭代器const迭代器,如下代码

typedef __list_iterator<T, T&, T*>  iterator;   //迭代器别名   
typedef __list_iterator<T, const T&, const T*>  const_iterator; //const迭代器别名

如下图

node是节点的指针,是核心数据。在迭代器这个类中,重载了*  ->  ++  --  ==  != 运算符是为了让结点指针能像普通指针一样,完成对链表的遍历和对数据的存取。这便是封装的魅力。

list的设计

template <class T, class Alloc = alloc>
class list
{
protected:typedef __list_node<T> list_node;public:typedef list_node* link_type;protected:link_type node;
}

上文已经提到,只需用一个节点指针node指向哨兵位节点,便可以通过迭代器对整条链表增删查改。

 begin()

iterator begin()
{
return (link_type)((*node).next);
}

获取哨兵位节点的下一个指针next,但next是void*类型的指针,需要强转成节点类型的指针

end()

iterator end()
{
return node;
}

获取尾节点的下一个节点的指针——哨兵位节点指针

空构造

void empty_initialize()
{node = get_node(); //为哨兵位开空间node->next = node; //没有有效节点,首尾指针都指向自己node->prev = node;}list()//构造函数,构造空链表
{
empty_initialize();}

list是允许构造空链表的

详解构造函数:http://t.csdnimg.cn/Iu0t4

insert()

iterator insert (iterator position, const T& x)
{link_type tmp = create_node(x);tmp->next = position.node;
tmp->prev =  position.node->prev;
(link_type(position.node->prev))->net = tmp;
position.node->prev = tmp;return tmp;}

上述代码中有经过封装的函数。但大致思路如下图

隐式类型转换:http://t.csdnimg.cn/jBT7I

push_back

void push_back(const T& x)
{
insert(end(), x);}

复用insert


模拟实现

目的:源代码的变量经过了嵌套的typedef,函数经过层层封装。用源代码理解list的实现细节和运行机制并不容易。用源代码的的框架和实现思路实现一个简易的list,帮助我们更好的理解list。

模拟实现是用new和delete,管理list的内存。详见内存管理一文:http://t.csdnimg.cn/byO3P

节点设计

template <class T>
struct __list_node
{T* prev;//指向前一个节点T* next;//指向后一个节点T data;//储存数据__list_node(const T& val = T()) //构造函数:prev(nullptr), next(nullptr)  //参数列表, data(val){}
};

迭代器设计

template <class T, class Ref, class Ptr>  //封装指针
struct __list_iterator
{typedef __list_iterator<T, Ref, Ptr>  self;   //迭代器别名 typedef __list_node<T>  list_node; //节点别名别名  list_node* p_node;   //节点指针 __list_iterator(list_node* val)  :p_node(val)        {};     T operator*()//解引用重载{return  p_node->data;        }; Ref operator*()//解引用重载 {return  p_node->data;};T operator->(){return &p_node->data;}Ptr operator->()     {return &p_node->data;}self& operator++()//加加运算符重载 {return p_node->next; };bool operator!=(const self val)//不等于运算符重载{return p_node != val.p_node;};bool operator==(const self val)//等于运算符重载  {return p_node == val.p_node; };};

list设计

框架

template <class T>
class list
{typedef __list_node<T>  list_node; //节点指针别名typedef __list_iterator<T, T&, T*>  iterator;   //迭代器别名   typedef __list_iterator<T, const T&, const T*>  const_iterator;   //const迭代器别名    public://接口......private:list_node* head_node;//头节点,只要一个指针便可代表整个链表 };

获取迭代器

iterator begin() 
{return head_node->next;}
const_iterator begin()
{return head_node->next;
}iterator end()
{return head_node; 
}const_iterator end()  
{return head_node;
}

空构造

void empty_init()
{head_node = new list_node;head_node->_prev = head_node;head_node->_next = head_node;}
list()
{empty_init();
}

insert

iterator insert(iterator pos, const T& x)//指定位置插入
{list_node* cur = pos.p_node;  //用临时指针指向迭代器位置的节点list_node* prev = cur->prev; //用临时指针指向该节点的下一个节点list_node* newnode = new list_node(x); //构造新节点prev->next = newnode; //改变指向newnode->next = cur;cur->prev = newnode;newnode->prev = prev; return newnode; //返回新节点的迭代器
}

代码思路如下图

erase

iterator erase(iterator pos)//指定位置删除
{assert(pos != end());  //不能删哨兵位list_node* cur = pos.p_node; //用临时指针指向前中后三个节点list_node* prev = cur->prev;list_node* next = cur->next;prev->next = next; //改变指向next->prev = prev;delete cur;//删除该节点return next; //返回下一个位置的节点的迭代器}

赋值重载

现在写法

void swap(list<T>& lt)   
{std::swap(head_node, lt.head_node);   
}list<T>& operator=(list<T> lt)  
{swap(lt);return *this;
}

其他接口

void push_back(const T& x)
{insert(end(), x); 
}void push_front(const T& x)
{insert(begin(), x); 
}void pop_back()
{erase(--end()); 
}void pop_front()
{erase(begin()); 
}

本篇内容到此结束啦

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/319631.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C# Web控件与数据感应之 TreeView 类

目录 关于 TreeView 一些区别 准备数据源 范例运行环境 一些实用方法 获取数据进行呈现 ​根据ID设置节点 获取所有结点的索引 小结 关于 TreeView 数据感应也即数据捆绑&#xff0c;是一种动态的&#xff0c;Web控件与数据源之间的交互&#xff0c;本文将继续介绍与…

C#技巧之同步与异步

区别 首先&#xff0c;同步就是程序从上往下顺序执行&#xff0c;要执行完当前流程&#xff0c;才能往下个流程去。 而异步&#xff0c;则是启动当前流程以后&#xff0c;不需要等待流程完成&#xff0c;立刻就去执行下一个流程。 同步示例 创建一个窗体&#xff0c;往窗体里…

Mybatis进阶2

Mybatis进阶1-CSDN博客 Mybatis入门-CSDN博客 Mybatis入门2-CSDN博客 我们接下来要学习Mybatis的高级查询 我们先在数据库中准备我们需要的数据表 teacher表 课程表&#xff1a;与教师表是一对多的关系&#xff0c;所以有一个外键字段 学生表 由于学生表和课程表是多对多的…

翻译: 什么是ChatGPT 通过图形化的方式来理解 Transformer 架构 深度学习四

合集 ChatGPT 通过图形化的方式来理解 Transformer 架构 翻译: 什么是ChatGPT 通过图形化的方式来理解 Transformer 架构 深度学习一翻译: 什么是ChatGPT 通过图形化的方式来理解 Transformer 架构 深度学习二翻译: 什么是ChatGPT 通过图形化的方式来理解 Transformer 架构 深…

支付宝支付流程

第一步前端&#xff1a;点击去结算&#xff0c;前端将商品的信息传递给后端&#xff0c;后端返回一个商品的订单号给到前端&#xff0c;前端将商品的订单号进行存储。 对应的前端代码&#xff1a;然后再跳转到支付页面 // 第一步 点击去结算 然后生成一个订单号 // 将选中的商…

Python-VBA函数之旅-open函数

目录 一、open函数的常见应用场景 二、open函数使用注意事项 三、如何用好open函数&#xff1f; 1、open函数&#xff1a; 1-1、Python&#xff1a; 1-2、VBA&#xff1a; 2、推荐阅读&#xff1a; 个人主页&#xff1a;神奇夜光杯-CSDN博客 一、open函数的常见应用场…

【JavaEE 初阶(一)】初识线程

❣博主主页: 33的博客❣ ▶️文章专栏分类:JavaEE◀️ &#x1f69a;我的代码仓库: 33的代码仓库&#x1f69a; &#x1faf5;&#x1faf5;&#x1faf5;关注我带你了解更多线程知识 目录 1.前言2.进程3.线程4.线程和进程的区别5.Thread创建线程5.1继承Thread创建线程5.2实现R…

从零开始:Django项目的创建与配置指南

title: 从零开始&#xff1a;Django项目的创建与配置指南 date: 2024/5/2 18:29:33 updated: 2024/5/2 18:29:33 categories: 后端开发 tags: DjangoWebDevPythonORMSecurityDeploymentOptimization Django简介&#xff1a; Django是一个开源的高级Python Web框架&#xff…

AI工具大揭秘:如何改变我们的工作和生活

文章目录 &#x1f4d1;前言一、常用AI工具&#xff1a;便利与高效的结合1.1 语音助手1.2 智能推荐系统1.3 自然语言处理工具 二、创新AI应用&#xff1a;不断突破与发展2.1 医疗诊断AI2.2 智能家居2.3 无人驾驶技术 三、AI工具在人们生活中的应用和影响3.1 生活方式的变化3.2 …

Delta lake with Java--使用stream同步数据

今天继续学习Delta lake Up and Running 的第8章&#xff0c;处理流数据&#xff0c;要实现的效果就是在一个delta表&#xff08;名为&#xff1a;YellowTaxiStreamSource&#xff09;插入一条数据&#xff0c;然后通过流的方式能同步到另外一个delta表 &#xff08;名为&#…

LeetCode题练习与总结:分隔链表--86

一、题目描述 给你一个链表的头节点 head 和一个特定值 x &#xff0c;请你对链表进行分隔&#xff0c;使得所有 小于 x 的节点都出现在 大于或等于 x 的节点之前。 你应当 保留 两个分区中每个节点的初始相对位置。 示例 1&#xff1a; 输入&#xff1a;head [1,4,3,2,5,2]…

神经网络的优化器

神经网络的优化器是用于训练神经网络的一类算法&#xff0c;它们的核心目的是通过改变神经网络的权值参数来最小化或最大化一个损失函数。优化器对损失函数的搜索过程对于神经网络性能至关重要。 作用&#xff1a; 参数更新&#xff1a;优化器通过计算损失函数相对于权重参数的…

ngrinder项目-本地调试遇到的坑

前提-maven mirrors配置 <mirrors><!--阿里公有仓库--><mirror><id>nexus-aliyun</id><mirrorOf>central</mirrorOf><name>Nexus aliyun</name><url>http://maven.aliyun.com/nexus/content/groups/public</ur…

从零开始学AI绘画,万字Stable Diffusion终极教程(二)

【第2期】关键词 欢迎来到SD的终极教程&#xff0c;这是我们的第二节课 这套课程分为六节课&#xff0c;会系统性的介绍sd的全部功能&#xff0c;让你打下坚实牢靠的基础 1.SD入门 2.关键词 3.Lora模型 4.图生图 5.controlnet 6.知识补充 在第一节课里面&#xff0c;我们…

(六)SQL系列练习题(下)#CDA学习打卡

目录 三. 查询信息 16&#xff09;检索"1"课程分数小于60&#xff0c;按分数降序排列的学生信息​ 17&#xff09;*按平均成绩从高到低显示所有学生的所有课程的成绩以及平均成绩 18&#xff09;*查询各科成绩最高分、最低分和平均分 19&#xff09;*按各科成绩…

总分420+专业140+哈工大哈尔滨工业大学803信号与系统和数字逻辑电路考研电子信息与通信工程,真题,大纲,参考书。

考研复习一路走来&#xff0c;成绩还是令人满意&#xff0c;专业803信号和数电140&#xff0c;总分420&#xff0c;顺利上岸&#xff0c;总结一下自己这一年复习经历&#xff0c;希望大家可以所有参考&#xff0c;这一年复习跌跌拌拌&#xff0c;有时面对压力也会焦虑&#xff…

【iOS】KVC

文章目录 前言一、KVC常用方法二、key与keypath区别key用法keypath用法 三、批量存值操作四、字典与模型相互转化五、KVC底层原理KVC设值底层原理KVC取值底层原理 前言 KVC的全称是Key-Value Coding&#xff0c;翻译成中文叫做键值编码 KVC提供了一种间接访问属性方法或成员变…

从零开始学AI绘画,万字Stable Diffusion终极教程(四)

【第4期】图生图 欢迎来到SD的终极教程&#xff0c;这是我们的第四节课 这套课程分为六节课&#xff0c;会系统性的介绍sd的全部功能&#xff0c;让你打下坚实牢靠的基础 1.SD入门 2.关键词 3.Lora模型 4.图生图 5.controlnet 6.知识补充 在前面的课程中&#xff0c;我…

杭电acm2018 母牛的故事 Java解法 经典递归

标准递归题 先模拟 接着找递归出口 再找递归通式 想想看 今天的母牛等于前一天的母牛数加上今天出生的母牛 而三天前的母牛所有母牛都能生一头 import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner scnew Scanner(System.in);l…

【计算机网络】计算机网络的定义和分类

一.定义 计算机网络并没有一个精确和统一的定义&#xff0c;在计算机网络发展的不同阶段&#xff0c;人们对计算机网络给出了不同的定义&#xff0c;这些定义反映了当时计算机网络技术的发展水平。 例如计算机网络早期的一个最简单定义&#xff1a;计算机网络是一些互连的、自…