Re69:读论文 LaMDA: Language Models for Dialog Applications

诸神缄默不语-个人CSDN博文目录
诸神缄默不语的论文阅读笔记和分类

论文名称:LaMDA: Language Models for Dialog Applications
ArXiv网址:https://arxiv.org/abs/2201.08239

本文介绍谷歌提出的对话大模型LaMDA,主要关注对各项指标(包括对话质量、安全性等)的优化。
因为我自己不是做对话的,所以很多对话子领域特有的内容我就不写了。

在研究中发现扩大模型能提高对话质量,但不能提高安全性和factual grounding(大概就是找出理论依据、减少幻觉这种任务),本文通过在标注数据上微调和引入外部知识源来解决这两个问题。
对话质量:sensibleness, specificity, and interestingness
安全性:不提供有害建议和偏见等。用有标数据构建分类器。(从网络搜集外部知识可能会降低安全性,本文用的是已知资料;微调能增强安全性)
引入外部知识源提高factual grounding:信息检索,翻译器,计算器等。指标:Informativeness(携带外部信息的比例),Citation accuracy(引用正确超链接的比例)

LaMDA方法对对话质量和安全性指标都能实现提升:
在这里插入图片描述

application-specific helpfulness (i.e., useful and correct responses)
role consistency (i.e., agent utterances match agent role) 指标:Helpfulness and Role consistency

预训练时的数据集Infiniset包括对话数据(众包打分)和通用语料,全是英语。

微调第一步:FT quality-safety

通用微调格式:<context> <sentinel> <response>(损失函数只计算response)
示例:What’s up? RESPONSE not much.

针对特定指标的格式:<context> <sentinel> <response> <attribute-name> <rating>(损失函数只计算rating)
示例:What’s up? RESPONSE not much. SENSIBLE 1

指标权重:3 * P(sensible) + P(specific) + P(interesting)

LaMDA的模型架构是Transformer decoder。

在这里插入图片描述
解码时采用sample-and-rank策略:抽样,根据对数似然和长度选择得分最高的座位输出。

The toolset (TS)

微调第二步:FT groundedness (LaMDA)

context + base
context + base + query + snippet

调用外部API,如信息检索系统

在这里插入图片描述
↑ 图中黄色为模型输入,红色为模型输出(以TS为标志,是否要检索),绿色为检索系统输出

微调数据:
在这里插入图片描述

不同尺寸模型的微调效果:(PT就是没有经过微调的版本,只经过了语言模型预训练)
在这里插入图片描述

指标结果:
在这里插入图片描述

微调子机制效果(模型分析):
在这里插入图片描述

LaMDA在领域任务上的效果的实验,场景是:
在这里插入图片描述
用几轮role-specific dialogs开头来引导LaMDA模型进入角色:
在这里插入图片描述
在这里插入图片描述

公平、安全、耗能和碳足迹问题之类的,我以后需要参考了再看吧。略。

其他应该考虑的指标:
礼貌程度
appropriateness
人格化
不同应用对指标有着不同的需求

附录还有很详细的安全问题定义与分类、标注人员的信息和标注方法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/321084.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一文带你了解 Oracle 23ai 新特性 Vector 的基础用法

Oracle Database 23ai 来了&#xff0c;虽然目前只是云上可商用&#xff0c;但是 OP 有 FREE 版本可以进行开发。 本文将介绍 Oracle 23ai 的新特性之一&#xff1a; AI 向量搜索&#xff0c;的部分内容。 向量数据类型 23ai 新增向量数据类型&#xff0c;可以用于表示一系列的…

【LeetCode刷题】875. 爱吃香蕉的珂珂

1. 题目链接 875. 爱吃香蕉的珂珂 2. 题目描述 3. 解题方法 简单的用我自己的理解来解释一下这道题的意思。 所以也就是说找到一个速度k&#xff0c;看还有没有比k更小的速度能吃完数组中的香蕉&#xff0c;如果有则继续寻找&#xff0c;没有则是k这个速度。就好比上面的解释…

成人职场英语口语柯桥外语培训之Big deal不是“大事”!别再翻译错啦!

关于deal&#xff0c; 其实有很多容易被人误解的表达&#xff0c; 小编今天就来给大家一一盘点~ 1, deal n. deal 作名词的时候意思是“交易&#xff1b;买卖”。 ❖ She got a new car for $1000! That was really a good deal! 她一千美金买了辆车&#xff01;真是158575…

图片编辑工具-Gimp

一、前言 GIMP&#xff08;GNU Image Manipulation Program&#xff09;是一款免费开源的图像编辑软件&#xff0c;具有功能强大和跨平台的特性。 GIMP作为一个图像编辑器&#xff0c;它提供了广泛的图像处理功能&#xff0c;包括但不限于照片修饰、图像合成以及创建艺术作品…

新的循环体和define

目录 do while讲解 练习&#xff1a; 结果&#xff1a; 分析&#xff1a; 定义&#xff1a;宏&#xff08;define&#xff09; 练习&#xff1a; 结果&#xff1a; 分析&#xff1a; define的优缺点 优点&#xff1a; 缺点&#xff1a; 作业&#xff1a; 大家假期…

搭建父模块和工具子模块

第一章 项目父模块搭建 1.1 nancal-idsa 作为所有工程的父工程&#xff0c;用于管理项目的所有依赖版本。 1.2 指定 pom 类型模块&#xff0c;删除 src 目录&#xff0c;点击Reload project 1.3 添加依赖 pom.xml <parent> <groupId>org.springframework.…

很快就可以试用Domino 15了

大家好&#xff0c;才是真的好。 前几天在比利时的安普卫特举办的Engage2024大会已经结束&#xff0c;流出的现场照片很多&#xff0c;主要是会议场地照片很多&#xff0c;说是令人震撼&#xff1b;可惜这次一手的PPT和会议内容不多.是的&#xff0c;本来我也是在等与会者写的…

人脸识别开源算法库和开源数据库

目录 1. 人脸识别开源算法库 1.1 OpenCV人脸识别模块 1.2 Dlib人脸识别模块 1.3 SeetaFace6 1.4 DeepFace 1.5 InsightFace 2. 人脸识别开源数据库 2.1 CelebA 2.2 LFW 2.3 MegaFace 2.4 Glint360K 2.5 WebFace260M 人脸识别 (Face Recognition) 是一种基于人的面部…

2022 年全国职业院校技能大赛高职组云计算赛项试卷(私有云)

#需要资源&#xff08;软件包及镜像&#xff09;或有问题的&#xff0c;可私聊博主&#xff01;&#xff01;&#xff01; #需要资源&#xff08;软件包及镜像&#xff09;或有问题的&#xff0c;可私聊博主&#xff01;&#xff01;&#xff01; #需要资源&#xff08;软件包…

代码随想录刷题随记30-贪心4

代码随想录刷题随记30-贪心4 860.柠檬水找零 leetcode链接 比较显然 class Solution {public boolean lemonadeChange(int[] bills) {int []accountnew int[3];for(int cur:bills){if(cur5)account[0];else if(cur10){account[0]--;if(account[0]<0)return false;account…

ICode国际青少年编程竞赛- Python-1级训练场-路线规划

ICode国际青少年编程竞赛- Python-1级训练场-路线规划 1、 Dev.step(3) Dev.turnLeft() Dev.step(4)2、 Dev.step(3) Dev.turnLeft() Dev.step(3) Dev.step(-6)3、 Dev.step(-2) Dev.step(4) Dev.turnLeft() Dev.step(3)4、 Dev.step(2) Spaceship.step(2) Dev.step(3)5、…

【论文阅读】Fuzz4All: Universal Fuzzing with Large Language Models

文章目录 摘要一、介绍二、Fuzz4All的方法2.1、自动提示2.1.1、自动提示算法2.1.2、自动提示的例子2.1.3、与现有自动提示技术的比较 2.2、fuzzing循环2.2.1、模糊循环算法2.2.2、Oracle 三、实验设计3.1、实现3.2、被测系统和baseline3.3、实验设置以及评估指标 四、结果分析4…

iPhone查看本机号码只需要这3招,不再为号码忘记犯愁!

在日常生活中&#xff0c;我们经常需要使用手机号码进行各种通讯活动&#xff0c;但有时候会忘记自己的手机号码&#xff0c;让人感到非常尴尬。不过&#xff0c;如果您是iPhone用户&#xff0c;那么您可以放心了&#xff01;因为在iphone查看本机号码只需要简单的几个步骤&…

linux系统 虚拟机的安装详细步骤

window&#xff1a; (1) 个人&#xff1a;win7 win10 win11 winxp (2)服务器&#xff1a;windows server2003 2008 2013 linux&#xff1a; (1)centos7 5 6 8 (2)redhat (3)ubuntu (4)kali 什么是linux: 主要是基于命令来完成各种操作&#xff0c;类似于DO…

使用STM32F103C8T6与蓝牙模块HC-05连接实现手机蓝牙控制LED灯

导言: 在现代智能家居系统中,远程控制设备变得越来越普遍和重要。本文将介绍如何利用STM32F103C8T6单片机和蓝牙模块HC-05实现远程控制LED灯的功能。通过这个简单的项目,可以学会如何将嵌入式系统与蓝牙通信技术相结合,实现远程控制的应用。 目录 导言: 准备工作: 硬…

Spring Data JPA的一对一、LazyInitializationException异常、一对多、多对多操作

Spring Data JPA系列 1、SpringBoot集成JPA及基本使用 2、Spring Data JPA Criteria查询、部分字段查询 3、Spring Data JPA数据批量插入、批量更新真的用对了吗 4、Spring Data JPA的一对一、LazyInitializationException异常、一对多、多对多操作 前言 通过前三篇Sprin…

GNU Radio创建FFT、IFFT C++ OOT块

文章目录 前言一、GNU Radio官方FFT弊端二、创建自定义的 C OOT 块1、创建 OOT 模块2、创建 OOT 块3、修改 C 和 CMAKE 文件4、编译及安装 OOT 块 三、测试1、grc 图2、运行结果①、时域波形对比②、频谱图对比 四、资源自取 前言 GNU Radio 自带的 FFT 模块使用起来不是很方便…

RT-DETR-20240507周更说明|更新Inner-IoU、Focal-IoU、Focaler-IoU等数十种IoU计算方式

RT-DETR改进专栏|包含主干、模块、注意力、损失函数等改进 专栏介绍 本专栏包含模块、卷积、检测头、损失等深度学习前沿改进,目前已有改进点70&#xff01;每周更新。 20240507更新说明&#xff1a; ⭐⭐ 更新CIoU、DIoU、MDPIoU、GIoU、EIoU、SIoU、ShapeIou、PowerfulIoU、…

04-28 周日 FastAPI Post请求同时传递文件和普通参数

04-28 周日 FastAPI Post请求同时传递文件和普通参数 时间版本修改人描述04-28 周日V0.1宋全恒新建文档2024年5月6日14:20:05V1.0宋全恒完成文档的传递 简介 由于在重构FastBuild的时候&#xff0c;为了支持TLS是否启用&#xff0c;在接口中需要同时传递文件参数和其他参数&am…

【Vue3】Ref与Reactive

3.1【ref 创建&#xff1a;基本类型的响应式数据】 作用&#xff1a;定义响应式变量。语法&#xff1a;let xxx ref(初始值)。返回值&#xff1a;一个RefImpl的实例对象&#xff0c;简称ref对象或ref&#xff0c;ref对象的value属性是响应式的。注意点&#xff1a; JS中操作数…