Python开源工具库使用之运动姿势追踪库mediapipe

文章目录

  • 前言
  • 一、姿势估计
    • 1.1 姿态关键点
    • 1.2 旧版 solution API
    • 1.3 新版 solution API
    • 1.4 俯卧撑计数
  • 二、手部追踪
    • 2.1 手部姿态
    • 2.2 API 使用
    • 2.3 识别手势含义
  • 参考

前言

Mediapipe 是谷歌出品的一种开源框架,旨在为开发者提供一种简单而强大的工具,用于实现各种视觉和感知应用程序。它包括一系列预训练的机器学习模型和用于处理多媒体数据的工具,可以用于姿势估计、手部追踪、人脸检测与跟踪、面部标志、对象检测、图片分割和语言检测等任务

Mediapipe 是支持跨平台的,可以部署在手机端(Android, iOS), web, desktop, edge devices, IoT 等各种平台,编程语言也支持C++, Python, Java, Swift, Objective-C, Javascript等

在本文中,我们将通过Python实现 Mediapipe 在姿势估计和手部追踪不同领域的应用

  • github 地址:https://github.com/google/mediapipe

一、姿势估计

1.1 姿态关键点

在这里插入图片描述

序号部位Pose Landmark
0鼻子PoseLandmark.NOSE
1左眼(内侧)PoseLandmark.LEFT_EYE_INNER
2左眼PoseLandmark.LEFT_EYE
3左眼(外侧)PoseLandmark.LEFT_EYE_OUTER
4右眼(内侧)PoseLandmark.RIGHT_EYE_INNER
5右眼PoseLandmark.RIGHT_EYE
6右眼(外侧)PoseLandmark.RIGHT_EYE_OUTER
7左耳PoseLandmark.LEFT_EAR
8右耳PoseLandmark.RIGHT_EAR
9嘴巴(左侧)PoseLandmark.MOUTH_LEFT
10嘴巴(右侧)PoseLandmark.MOUTH_RIGHT
11左肩PoseLandmark.LEFT_SHOULDER
12右肩PoseLandmark.RIGHT_SHOULDER
13左肘PoseLandmark.LEFT_ELBOW
14右肘PoseLandmark.RIGHT_ELBOW
15左腕PoseLandmark.LEFT_WRIST
16右腕PoseLandmark.RIGHT_WRIST
17左小指PoseLandmark.LEFT_PINKY
18右小指PoseLandmark.RIGHT_PINKY
19左食指PoseLandmark.LEFT_INDEX
20右食指PoseLandmark.RIGHT_INDEX
21左拇指PoseLandmark.LEFT_THUMB
22右拇指PoseLandmark.RIGHT_THUMB
23左臀PoseLandmark.LEFT_HIP
24右臀PoseLandmark.RIGHT_HIP
25左膝PoseLandmark.LEFT_KNEE
26右膝PoseLandmark.RIGHT_KNEE
27左踝PoseLandmark.LEFT_ANKLE
28右踝PoseLandmark.RIGHT_ANKLE
29左脚跟PoseLandmark.LEFT_HEEL
30右脚跟PoseLandmark.RIGHT_HEEL
31左脚趾PoseLandmark.LEFT_FOOT_INDEX
32右脚趾PoseLandmark.RIGHT_FOOT_INDEX

1.2 旧版 solution API

Mediapipe 提供 solution API 来实现快速检测, 不过这种方式在2023年5月10日停止更新了,不过目前还可以使用,可通过 mediapose.solutions.pose.Pose 来实现,配置参数如下

选项含义值范围默认值
static_image_mode如果设置为 False,会将输入图像视为视频流。它将尝试检测第一张图像中最突出的人,并在成功检测后进一步定位姿势。在随后的图像中,它只是跟踪这些标记,而不调用另一个检测,直到它失去跟踪,从而减少计算和延迟。如果设置为 True,则人员检测将运行每个输入图像,非常适合处理一批静态(可能不相关的)图像BooleanFalse
model_complexity模型的复杂度,准确性和推理延迟通常随着模型复杂性的增加而增加{0,1,2}1
smooth_landmarks如果设置为 True,则solution 过滤器会在不同的输入图像中设置标记以减少抖动,但如果 static_image_mode 也设置为 True,则忽略该筛选器BooleanTrue
enable_segmentation如果设置为 True,则除了姿态标记外,还会生成分割蒙版BooleanFalse
smooth_segmentation如果设置为 True,则会过滤不同输入图像中的分割掩码,以减少抖动。如果enable_segmentation为 false 或 static_image_mode为 True,则忽略BooleanTrue
min_detection_confidence人员检测模型的最小置信度值 ,用于将检测视为成功Float [0.0,1.0]0.5
min_tracking_confidence来自姿态跟踪模型的最小置信度值 , 用于将姿态标记视为成功跟踪,否则将在下一个输入图像上自动调用人员检测。将其设置为更高的值可以提高解决方案的可靠性,但代价是延迟更高。如果static_image_mode为 True,则忽略,其中人员检测仅对每个图像运行。Float [0.0,1.0]0.5
import cv2
import numpy as np
import mediapipe as mpdef main():FILE_PATH = 'data/1.png'img = cv2.imread(FILE_PATH)mp_pose = mp.solutions.posepose = mp_pose.Pose(static_image_mode=True,min_detection_confidence=0.5, min_tracking_confidence=0.5)res = pose.process(img)img_copy = img.copy()if res.pose_landmarks is not None:mp_drawing = mp.solutions.drawing_utils# mp_drawing.draw_landmarks(#     img_copy, res.pose_landmarks, mp.solutions.pose.POSE_CONNECTIONS)mp_drawing.draw_landmarks(img_copy,res.pose_landmarks,mp_pose.POSE_CONNECTIONS,  # frozenset,定义了哪些关键点要连接mp_drawing.DrawingSpec(color=(255, 255, 255),  # 姿态关键点thickness=2,circle_radius=2),mp_drawing.DrawingSpec(color=(174, 139, 45),   # 连线颜色thickness=2,circle_radius=2),)cv2.imshow('MediaPipe Pose Estimation', img_copy)cv2.waitKey(0)if __name__ == '__main__':main()

mediapipe_001

import cv2
import numpy as np
import mediapipe as mpdef video():# 读取摄像头# cap = cv2.VideoCapture(0)# 读取视频cap = cv2.VideoCapture('data/1.mp4')mp_pose = mp.solutions.posepose = mp_pose.Pose(static_image_mode=False,min_detection_confidence=0.5, min_tracking_confidence=0.5)while cap.isOpened():ret, frame = cap.read()if not ret:break# 摄像头# continue# 将 BGR 图像转换为 RGBrgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)# 进行姿势估计results = pose.process(rgb_frame)if results.pose_landmarks is not None:# 绘制关键点和连接线mp_drawing = mp.solutions.drawing_utilsmp_drawing.draw_landmarks(frame, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)# 显示结果cv2.imshow('MediaPipe Pose Estimation', frame)if cv2.waitKey(1) & 0xFF == ord('q'):break# 释放资源cap.release()cv2.destroyAllWindows()if __name__ == '__main__':video()

mediapipe_002.gif

1.3 新版 solution API

旧版 API 并不能检测多个姿态,新版 API 可以实现多个姿态检测

选项含义值范围默认值
running_mode设置任务的运行模式,有三种模式可选:
IMAGE: 单一照片输入.
VIDEO: 视频.
LIVE_STREAM: 输入数据(例如来自摄像机)为实时流。在此模式下,必须调用 resultListener 来设置侦听器以异步接收结果.
{IMAGE, VIDEO, LIVE_STREAM}IMAGE
num_poses姿势检测器可以检测到的最大姿势数Integer > 01
min_pose_detection_confidence姿势检测被认为是成功的最小置信度得分Float [0.0,1.0]0.5
min_pose_presence_confidence姿态检测中的姿态存在分数的最小置信度分数Float [0.0,1.0]0.5
min_tracking_confidence姿势跟踪被视为成功的最小置信度分数Float [0.0,1.0]0.5
output_segmentation_masks是否为检测到的姿势输出分割掩码BooleanFalse
result_callback将结果侦听器设置为在Pose Landmark处于LIVE_STREAM模式时异步接收Landmark结果。仅当运行模式设置为LIVE_STREAM时才能使用ResultListenerN/A
from mediapipe import solutions
from mediapipe.framework.formats import landmark_pb2
import cv2
import numpy as np
import mediapipe as mpmp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.posedef draw_landmarks_on_image(rgb_image, detection_result):pose_landmarks_list = detection_result.pose_landmarksannotated_image = np.copy(rgb_image)# Loop through the detected poses to visualize.for idx in range(len(pose_landmarks_list)):pose_landmarks = pose_landmarks_list[idx]# Draw the pose landmarks.pose_landmarks_proto = landmark_pb2.NormalizedLandmarkList()pose_landmarks_proto.landmark.extend([landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in pose_landmarks])solutions.drawing_utils.draw_landmarks(annotated_image,pose_landmarks_proto,solutions.pose.POSE_CONNECTIONS,solutions.drawing_styles.get_default_pose_landmarks_style())return annotated_imagedef newSolution():BaseOptions = mp.tasks.BaseOptionsPoseLandmarker = mp.tasks.vision.PoseLandmarkerPoseLandmarkerOptions = mp.tasks.vision.PoseLandmarkerOptionsVisionRunningMode = mp.tasks.vision.RunningModemodel_path = 'data/pose_landmarker_heavy.task'options = PoseLandmarkerOptions(base_options=BaseOptions(model_asset_path=model_path),running_mode=VisionRunningMode.IMAGE,num_poses=10)FILE_PATH = 'data/4.jpg'image = cv2.imread(FILE_PATH)img = mp.Image.create_from_file(FILE_PATH)with PoseLandmarker.create_from_options(options) as detector:res = detector.detect(img)image = draw_landmarks_on_image(image, res)cv2.imshow('MediaPipe Pose Estimation', image)cv2.waitKey(0)if __name__ == '__main__':newSolution()

mediapipe_003

1.4 俯卧撑计数

通过计算胳膊弯曲角度来判断状态,并计算俯卧撑个数

import cv2
import mediapipe as mp
import numpy as npmp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.posedef calculate_angle(a, b, c):radians = np.arctan2(c.y - b.y, c.x - b.x) - \np.arctan2(a.y - b.y, a.x - b.x)angle = np.abs(np.degrees(radians))return angle if angle <= 180 else 360 - angledef angle_of_arm(landmarks, shoulder, elbow, wrist):shoulder_coord = landmarks[mp_pose.PoseLandmark[shoulder].value]elbow_coord = landmarks[mp_pose.PoseLandmark[elbow].value]wrist_coord = landmarks[mp_pose.PoseLandmark[wrist].value]return calculate_angle(shoulder_coord, elbow_coord, wrist_coord)def count_push_up(landmarks, counter, status):left_arm_angle = angle_of_arm(landmarks, "LEFT_SHOULDER", "LEFT_ELBOW", "LEFT_WRIST")right_arm_angle = angle_of_arm(landmarks, "RIGHT_SHOULDER", "RIGHT_ELBOW", "RIGHT_WRIST")avg_arm_angle = (left_arm_angle + right_arm_angle) // 2if status:if avg_arm_angle < 70:counter += 1status = Falseelse:if avg_arm_angle > 160:status = Truereturn counter, statusdef main():cap = cv2.VideoCapture('data/test.mp4')counter = 0status = Falsewith mp_pose.Pose(min_detection_confidence=0.7, min_tracking_confidence=0.7) as pose:while cap.isOpened():success, image = cap.read()if not success:print("empty camera")breakresult = pose.process(image)if result.pose_landmarks:mp_drawing.draw_landmarks(image, result.pose_landmarks, mp_pose.POSE_CONNECTIONS)counter, status = count_push_up(result.pose_landmarks.landmark, counter, status)cv2.putText(image, text=str(counter), org=(100, 100), fontFace=cv2.FONT_HERSHEY_SIMPLEX,fontScale=4, color=(255, 255, 255), thickness=2, lineType=cv2.LINE_AA)cv2.imshow("push-up counter", image)key = cv2.waitKey(1)if key == ord('q'):breakcap.release()if __name__ == '__main__':main()

mediapipe_004

二、手部追踪

2.1 手部姿态

hand-landmarks

2.2 API 使用

照片

选项含义值范围默认值
static_image_mode如果设置为 False,会将输入图像视为视频流。它将尝试在第一个输入图像中检测手,并在成功检测后进一步定位手部标志。在随后的图像中,一旦检测到所有 max_num_hands 手并定位了相应的手部标志,它就会简单地跟踪这些标志,而不会调用其他检测,直到它失去对任何手的跟踪。这减少了延迟,是处理视频帧的理想选择。如果设置为 True,则对每个输入图像运行手动检测,非常适合处理一批静态(可能不相关的)图像BooleanFalse
max_num_hands要检测的最大手数Integer2
model_complexity模型的复杂度,准确性和推理延迟通常随着模型复杂性的增加而增加{0,1}1
min_detection_confidence检测模型的最小置信度值 ,用于将检测视为成功Float [0.0,1.0]0.5
min_tracking_confidence来自手部跟踪模型的最小置信度值 , 用于将手部标记视为成功跟踪,否则将在下一个输入图像上自动调用检测。将其设置为更高的值可以提高解决方案的可靠性,但代价是延迟更高。如果static_image_mode为 True,则忽略,其中手部检测仅对每个图像运行。Float [0.0,1.0]0.5
import cv2
import mediapipe as mpmp_hands = mp.solutions.handsdef main():cv2.namedWindow("MediaPipe Hand", cv2.WINDOW_NORMAL)hands = mp_hands.Hands(static_image_mode=False, max_num_hands=2,min_detection_confidence=0.5, min_tracking_confidence=0.5)img = cv2.imread('data/finger/1.jpg')rgb_frame = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 进行手部追踪results = hands.process(rgb_frame)if results.multi_hand_landmarks:# 绘制手部关键点和连接线for hand_landmarks in results.multi_hand_landmarks:mp_drawing = mp.solutions.drawing_utilsmp_drawing.draw_landmarks(img, hand_landmarks, mp_hands.HAND_CONNECTIONS)# 显示结果cv2.imshow('MediaPipe Hand', img)cv2.waitKey(0)if __name__ == '__main__':main()

mediapipe_005_hand_image

import cv2
import mediapipe as mpmp_hands = mp.solutions.handsdef video():hands = mp_hands.Hands(static_image_mode=False, max_num_hands=2,min_detection_confidence=0.4, min_tracking_confidence=0.4)# 读取视频cap = cv2.VideoCapture('data/hand.mp4')while cap.isOpened():ret, frame = cap.read()if not ret:break# 将 BGR 图像转换为 RGBrgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)# 进行手部追踪results = hands.process(rgb_frame)if results.multi_hand_landmarks:# 绘制手部关键点和连接线for hand_landmarks in results.multi_hand_landmarks:mp_drawing = mp.solutions.drawing_utilsmp_drawing.draw_landmarks(frame, hand_landmarks, mp_hands.HAND_CONNECTIONS)# 显示结果cv2.imshow('MediaPipe Hand Tracking', frame)if cv2.waitKey(1) & 0xFF == ord('q'):break# 释放资源cap.release()cv2.destroyAllWindows()if __name__ == '__main__':video()

mediapipe_006.gif

2.3 识别手势含义

使用 KNN 对手势进行预测

import mediapipe as mp
import numpy as np
import cv2
from mediapipe.framework.formats.landmark_pb2 import NormalizedLandmarkList
from sklearn.neighbors import KNeighborsClassifiermp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands# 压缩特征点
class Embedder(object):def __init__(self):self._landmark_names = mp.solutions.hands.HandLandmarkdef __call__(self, landmarks):# modify the call func can both handle a 3-dim dataset and a single referencing result.if isinstance(landmarks, np.ndarray):if landmarks.ndim == 3:  # for datasetembeddings = []for lmks in landmarks:embedding = self.__call__(lmks)embeddings.append(embedding)return np.array(embeddings)elif landmarks.ndim == 2:  # for inferenceassert landmarks.shape[0] == len(list(self._landmark_names)), 'Unexpected number of landmarks: {}'.format(landmarks.shape[0])# Normalize landmarks.landmarks = self._normalize_landmarks(landmarks)# Get embedding.embedding = self._get_embedding(landmarks)return embeddingelse:print('ERROR: Can NOT embedding the data you provided !')else:if isinstance(landmarks, list):  # for datasetembeddings = []for lmks in landmarks:embedding = self.__call__(lmks)embeddings.append(embedding)return np.array(embeddings)elif isinstance(landmarks, NormalizedLandmarkList):  # for inference# Normalize landmarks.landmarks = np.array([[lmk.x, lmk.y, lmk.z]for lmk in landmarks.landmark], dtype=np.float32)assert landmarks.shape[0] == len(list(self._landmark_names)), 'Unexpected number of landmarks: {}'.format(landmarks.shape[0])landmarks = self._normalize_landmarks(landmarks)# Get embedding.embedding = self._get_embedding(landmarks)return embeddingelse:print('ERROR: Can NOT embedding the data you provided !')def _get_center(self, landmarks):# MIDDLE_FINGER_MCP:9return landmarks[9]def _get_size(self, landmarks):landmarks = landmarks[:, :2]max_dist = np.max(np.linalg.norm(landmarks - self._get_center(landmarks), axis=1))return max_dist * 2def _normalize_landmarks(self, landmarks):landmarks = np.copy(landmarks)# Normalizecenter = self._get_center(landmarks)size = self._get_size(landmarks)landmarks = (landmarks - center) / sizelandmarks *= 100  # optional, but makes debugging easier.return landmarksdef _get_embedding(self, landmarks):# we can add and delete any embedding featurestest = np.array([np.dot((landmarks[2]-landmarks[0]),(landmarks[3]-landmarks[4])),   # thumb bentnp.dot((landmarks[5]-landmarks[0]), (landmarks[6]-landmarks[7])),np.dot((landmarks[9]-landmarks[0]), (landmarks[10]-landmarks[11])),np.dot((landmarks[13]-landmarks[0]),(landmarks[14]-landmarks[15])),np.dot((landmarks[17]-landmarks[0]), (landmarks[18]-landmarks[19]))]).flatten()return testdef init_knn(file='data/dataset_embedded.npz'):npzfile = np.load(file)X = npzfile['X']y = npzfile['y']neigh = KNeighborsClassifier(n_neighbors=5)neigh.fit(X, y)return neighdef hand_pose_recognition(stream_img):# For static images:stream_img = cv2.cvtColor(stream_img, cv2.COLOR_BGR2RGB)embedder = Embedder()neighbors = init_knn()with mp_hands.Hands(static_image_mode=True,max_num_hands=2,min_detection_confidence=0.5) as hands:results = hands.process(stream_img)if not results.multi_hand_landmarks:return ['no_gesture'], stream_imgelse:annotated_image = stream_img.copy()multi_landmarks = results.multi_hand_landmarks# KNN inferenceembeddings = embedder(multi_landmarks)hand_class = neighbors.predict(embeddings)# hand_class_prob = neighbors.predict_proba(embeddings)# print(hand_class_prob)for landmarks in results.multi_hand_landmarks:mp_drawing.draw_landmarks(annotated_image,landmarks,mp_hands.HAND_CONNECTIONS,mp_drawing_styles.get_default_hand_landmarks_style(),mp_drawing_styles.get_default_hand_connections_style())return hand_class, annotated_image# 手势有10种,数字有8种,1-10之间7和9没有,还有两种是OK手势,和蜘蛛侠spide手势
# `eight_sign`, `five_sign`, `four_sign`, `ok`, `one_sign`, `six_sign`, `spider`, `ten_sign`, `three_sign`, `two_sign`def image():FILE_PATH = 'data/ok.png'img = cv2.imread(FILE_PATH)handclass, img_final = hand_pose_recognition(img)cv2.putText(img_final, text=handclass[0], org=(200, 50), fontFace=cv2.FONT_HERSHEY_SIMPLEX,fontScale=2, color=(255, 255, 255), thickness=2, lineType=cv2.LINE_AA)cv2.imshow('test', cv2.cvtColor(img_final, cv2.COLOR_RGB2BGR))cv2.waitKey(0)def video():cap = cv2.VideoCapture('data/ok.mp4')while cap.isOpened():ret, frame = cap.read()if not ret:breakhandclass, img_final = hand_pose_recognition(frame)cv2.putText(img_final, text=handclass[0], org=(50, 50), fontFace=cv2.FONT_HERSHEY_SIMPLEX,fontScale=2, color=(255, 0, 0), thickness=2, lineType=cv2.LINE_AA)cv2.imshow('test', cv2.cvtColor(img_final, cv2.COLOR_RGB2BGR))if cv2.waitKey(1) & 0xFF == ord('q'):breakif __name__ == '__main__':video()

mediapipe_007

参考

  1. https://developers.google.cn/mediapipe/solutions/
  2. https://github.com/googlesamples/mediapipe
  3. https://github.com/Furkan-Gulsen/Sport-With-AI
  4. https://github.com/Chuanfang-Neptune/DLAV-G9

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/322651.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

三.搜索与图论(未完结)

DFS(深搜) 之前写过三篇关于dfs的 练习总结: 基础算法--递归搜索DFS练习总结(上)-CSDN博客 基础算法--递归搜索DFS练习总结(中)-CSDN博客 基础算法--递归搜索DFS练习总结(下)-CSDN博客 以下题目均为 补充练习: P1460 [USACO2.1] 健康的荷斯坦奶牛 Healthy Holsteins …

【华为】AC直连二层组网隧道转发实验配置

【华为】AC直连二层组网隧道转发实验配置 实验需求拓扑配置AC数据规划表 AC的配置顺序AC1基本配置(二层通信)AP上线VAP组关联--WLAN业务流量 LSW1AR1STA获取AP的业务流量 配置文档 实验需求 AC组网方式&#xff1a;直连二层组网。 业务数据转发方式&#xff1a;隧道转发。 DHC…

MacOS搭建docker本地私有镜像库

相关环境 macOS: bigsur 11.7.8 docker desktop: 4.22.0 docker engine: 24.0.5 准备工作 本机已经安装好docker desktop&#xff0c;未安装的自行参考其他教程。如果不能翻墙&#xff0c;可以修改本地的镜像地址&#xff0c;可在docker desktop 设置中的docker engine中修…

Excel Module: Iteration #1 EasyExcel生成下拉列表模版时传入动态参数查询下拉数据

系列文章 EasyExcel生成带下拉列表或多级级联列表的Excel模版自定义校验导入数据(修订) 目录 系列文章前言仓库一、实现1.1 下拉元数据对象1.2 构建下拉元数据的映射关系1.3 框架方式1.3.1 框架实现1.3.2 框架用例模版类加载下拉业务导出接口 1.4 EasyExcel方式1.4.1 EasyExce…

Redis(Jedis和SpringBoot整合Redis)

文章目录 1.Jedis1.介绍2.环境配置1.创建maven项目2.pom.xml引入依赖3.新建一个包并创建一个文件 3.Jedis远程连接到Redis1.Redis放到服务器可以连接的前提条件2.为Redis设置密码1.编辑配置文件2.找到 requirepass3.设置密码为root4.重启Redis&#xff0c;在shutdown的时候报错…

计算机网络——Dijkstra路由算法

实验目的 实现基于 Dijkstra 算法的路由软件 实验内容 网络拓扑如图所示 实验过程 先编写开辟应该图的空间&#xff0c;然后给点映射数字&#xff0c;构建图。程序获取用户输入的学号&#xff0c;构建图中边的权值。接下来程序从用户输入获取最短路径的搜索起点&#xff0…

基于C++基础的函数模块

在C中&#xff0c;函数是一段封装了某种功能的代码块&#xff0c;可以在程序的不同地方重复使用。函数定义包含如下组成部分&#xff1a; 函数头&#xff1a;函数头包括函数返回类型、函数名和参数列表。函数返回类型规定了函数返回的数据类型&#xff0c;函数名是函数的唯一标…

Java_从入门到JavaEE_11

一、抽象类及抽象方法 1.认识抽象类及抽象方法 应用场景&#xff1a;当一个方法必须在父类中出现&#xff0c;但是这个方法又不好实现&#xff0c;就把该方法变成抽象方法&#xff0c;交给非抽象的子类去实现 实例&#xff1a; //抽象类 public abstract class 类名{//抽象方…

5月将有17款游戏发布,腾讯的《地下城与勇士:起源》备受关注

易采游戏网5月8日消息&#xff0c;本月将有17款新游戏预计上线&#xff0c;其中14款已正式定档&#xff0c;游戏市场即将迎来一场盛大的狂欢。在众多备受期待的游戏中&#xff0c;有两款游戏尤其引人注目&#xff0c;它们分别是来自库洛和腾讯的《地下城与勇士&#xff1a;起源…

学习方法的重要性

原贴&#xff1a;https://www.cnblogs.com/feily/p/13999204.html 原贴&#xff1a;https://36kr.com/p/1236733055209095 1、 “一万小时定律”的正确和误区 正确&#xff1a; 天才和大师的非凡&#xff0c;不是真的天资超人一等&#xff0c;而是付出了持续不断的努力&…

武汉星起航:成功挂牌上股交,优势尽显启新程,共绘创业投资梦

在金秋十月的尾声&#xff0c;武汉星起航电子商务有限公司迎来了一个重要的历史时刻——于2023年10月30日在上海股权托管交易中心成功挂牌展示&#xff0c;正式登陆资本市场。这一里程碑式的跨越&#xff0c;不仅标志着武汉星起航在跨境电商领域的卓越实力&#xff0c;更彰显了…

MAC地址冲突案例

1、问题描述&#xff1a;WiFi-A网段做了策略路由&#xff0c;引流到另一台设备&#xff0c;连接WiFi-A后通过DHCP获取到了地址却无法上网&#xff0c;此时排查思路是什么&#xff1f; &#xff08;1&#xff09;、排查方法&#xff1a; 看到网关通信是否正常 第一次获取地址正…

mysql中varchar与bigint直接比较会导致精度丢失以至于匹配到多行数据

在mysql中&#xff0c;我们都知道如果一个索引字段使用了函数或者计算那么查询的时候索引会失效&#xff0c;可是我相信在联表的时候我们只会关注两个表关联字段是否都创建了索引&#xff0c;却没有关注过这两个字段的类型是否一致&#xff0c;如果不一致的话索引是会失效的&am…

Windows系统完全卸载删除 Node.js (包含控制面板找不到node.js选项情况)

1.打开cmd命令行窗口&#xff0c;输入npm cache clean --force 回车执行 2.打开控制面板&#xff0c;在控制面板中把Node.js卸载 移除之后检查环境变量是否也移除&#xff1a;点击Path&#xff0c;点击编辑。 把环境变量中和node有关的全部移除&#xff0c;然后点击确定。 3.重…

WPF之创建无外观控件

1&#xff0c;定义无外观控件。 定义默认样式&#xff0c;在其静态构造函数中调用DefaultStyleKeyProperty.OverrideMetadata()。 //设置默认样式DefaultStyleKeyProperty.OverrideMetadata(typeof(ColorPicker), new FrameworkPropertyMetadata(typeof(ColorPicker))); 在项目…

Android C++ 开发调试 LLDB 工具的使用

文章目录 调试环境准备基础命令Breakpoint CommandsWatchpoint CommandsExamining VariablesEvaluating ExpressionsExamining Thread StateExecutable and Shared Library Query Commands 参考&#xff1a; Android 中在进行 NDK 开发的时候&#xff0c;我们经常需要进行 C 代…

为什么互联网行业这两年突然就不行了?

前言&#xff1a; 本人正好最近十年基本都是在互联网行业&#xff0c;真正算是经历了行业的起伏波澜&#xff0c;火的时候被烤的滚烫&#xff0c;冷的时候被冻得冰凉&#xff0c;都算是切身感受到了。 首先&#xff0c;互联网行业的“行”与“不行”&#xff0c;还是一个相对…

短剧新纪元:引领潮流的短剧小程序开发,一触即达精彩世界

在信息爆炸的时代&#xff0c;短视频以其短小精悍、内容丰富的特点迅速崛起&#xff0c;成为人们日常生活中不可或缺的一部分。然而&#xff0c;短视频的短暂与碎片化&#xff0c;有时难以满足观众对完整故事的需求。为此&#xff0c;我们倾力打造了一款短剧小程序&#xff0c;…

如何修复连接失败出现的错误651?这里提供修复方法

错误651消息在Windows 7到Windows 11上很常见&#xff0c;通常会出现在一个小的弹出窗口中。实际文本略有不同&#xff0c;具体取决于连接问题的原因&#xff0c;但始终包括文本“错误651”。 虽然很烦人&#xff0c;但错误651是一个相对较小的问题&#xff0c;不应该导致计算…

AI图书推荐:ChatGPT在真实商业世界中的应用

《ChatGPT在真实商业世界中的应用》 (Unleashing The Power of ChatGPT: A Real World Business Applications)首先概述了ChatGPT及其在对话式人工智能领域的影响。接着&#xff0c;你将深入了解ChatGPT的技术方面&#xff0c;理解机器学习算法和自然语言处理如何在后台工作。然…