文章目录
- 前言
- 一、姿势估计
- 1.1 姿态关键点
- 1.2 旧版 solution API
- 1.3 新版 solution API
- 1.4 俯卧撑计数
- 二、手部追踪
- 2.1 手部姿态
- 2.2 API 使用
- 2.3 识别手势含义
- 参考
前言
Mediapipe 是谷歌出品的一种开源框架,旨在为开发者提供一种简单而强大的工具,用于实现各种视觉和感知应用程序。它包括一系列预训练的机器学习模型和用于处理多媒体数据的工具,可以用于姿势估计、手部追踪、人脸检测与跟踪、面部标志、对象检测、图片分割和语言检测等任务
Mediapipe 是支持跨平台的,可以部署在手机端(Android, iOS), web, desktop, edge devices, IoT 等各种平台,编程语言也支持C++, Python, Java, Swift, Objective-C, Javascript等
在本文中,我们将通过Python实现 Mediapipe 在姿势估计和手部追踪不同领域的应用
- github 地址:https://github.com/google/mediapipe
一、姿势估计
1.1 姿态关键点
序号 | 部位 | Pose Landmark |
---|---|---|
0 | 鼻子 | PoseLandmark.NOSE |
1 | 左眼(内侧) | PoseLandmark.LEFT_EYE_INNER |
2 | 左眼 | PoseLandmark.LEFT_EYE |
3 | 左眼(外侧) | PoseLandmark.LEFT_EYE_OUTER |
4 | 右眼(内侧) | PoseLandmark.RIGHT_EYE_INNER |
5 | 右眼 | PoseLandmark.RIGHT_EYE |
6 | 右眼(外侧) | PoseLandmark.RIGHT_EYE_OUTER |
7 | 左耳 | PoseLandmark.LEFT_EAR |
8 | 右耳 | PoseLandmark.RIGHT_EAR |
9 | 嘴巴(左侧) | PoseLandmark.MOUTH_LEFT |
10 | 嘴巴(右侧) | PoseLandmark.MOUTH_RIGHT |
11 | 左肩 | PoseLandmark.LEFT_SHOULDER |
12 | 右肩 | PoseLandmark.RIGHT_SHOULDER |
13 | 左肘 | PoseLandmark.LEFT_ELBOW |
14 | 右肘 | PoseLandmark.RIGHT_ELBOW |
15 | 左腕 | PoseLandmark.LEFT_WRIST |
16 | 右腕 | PoseLandmark.RIGHT_WRIST |
17 | 左小指 | PoseLandmark.LEFT_PINKY |
18 | 右小指 | PoseLandmark.RIGHT_PINKY |
19 | 左食指 | PoseLandmark.LEFT_INDEX |
20 | 右食指 | PoseLandmark.RIGHT_INDEX |
21 | 左拇指 | PoseLandmark.LEFT_THUMB |
22 | 右拇指 | PoseLandmark.RIGHT_THUMB |
23 | 左臀 | PoseLandmark.LEFT_HIP |
24 | 右臀 | PoseLandmark.RIGHT_HIP |
25 | 左膝 | PoseLandmark.LEFT_KNEE |
26 | 右膝 | PoseLandmark.RIGHT_KNEE |
27 | 左踝 | PoseLandmark.LEFT_ANKLE |
28 | 右踝 | PoseLandmark.RIGHT_ANKLE |
29 | 左脚跟 | PoseLandmark.LEFT_HEEL |
30 | 右脚跟 | PoseLandmark.RIGHT_HEEL |
31 | 左脚趾 | PoseLandmark.LEFT_FOOT_INDEX |
32 | 右脚趾 | PoseLandmark.RIGHT_FOOT_INDEX |
1.2 旧版 solution API
Mediapipe 提供 solution API 来实现快速检测, 不过这种方式在2023年5月10日停止更新了,不过目前还可以使用,可通过 mediapose.solutions.pose.Pose
来实现,配置参数如下
选项 | 含义 | 值范围 | 默认值 |
---|---|---|---|
static_image_mode | 如果设置为 False,会将输入图像视为视频流。它将尝试检测第一张图像中最突出的人,并在成功检测后进一步定位姿势。在随后的图像中,它只是跟踪这些标记,而不调用另一个检测,直到它失去跟踪,从而减少计算和延迟。如果设置为 True,则人员检测将运行每个输入图像,非常适合处理一批静态(可能不相关的)图像 | Boolean | False |
model_complexity | 模型的复杂度,准确性和推理延迟通常随着模型复杂性的增加而增加 | {0,1,2} | 1 |
smooth_landmarks | 如果设置为 True,则solution 过滤器会在不同的输入图像中设置标记以减少抖动,但如果 static_image_mode 也设置为 True,则忽略该筛选器 | Boolean | True |
enable_segmentation | 如果设置为 True,则除了姿态标记外,还会生成分割蒙版 | Boolean | False |
smooth_segmentation | 如果设置为 True,则会过滤不同输入图像中的分割掩码,以减少抖动。如果enable_segmentation为 false 或 static_image_mode为 True,则忽略 | Boolean | True |
min_detection_confidence | 人员检测模型的最小置信度值 ,用于将检测视为成功 | Float [0.0,1.0] | 0.5 |
min_tracking_confidence | 来自姿态跟踪模型的最小置信度值 , 用于将姿态标记视为成功跟踪,否则将在下一个输入图像上自动调用人员检测。将其设置为更高的值可以提高解决方案的可靠性,但代价是延迟更高。如果static_image_mode为 True,则忽略,其中人员检测仅对每个图像运行。 | Float [0.0,1.0] | 0.5 |
import cv2
import numpy as np
import mediapipe as mpdef main():FILE_PATH = 'data/1.png'img = cv2.imread(FILE_PATH)mp_pose = mp.solutions.posepose = mp_pose.Pose(static_image_mode=True,min_detection_confidence=0.5, min_tracking_confidence=0.5)res = pose.process(img)img_copy = img.copy()if res.pose_landmarks is not None:mp_drawing = mp.solutions.drawing_utils# mp_drawing.draw_landmarks(# img_copy, res.pose_landmarks, mp.solutions.pose.POSE_CONNECTIONS)mp_drawing.draw_landmarks(img_copy,res.pose_landmarks,mp_pose.POSE_CONNECTIONS, # frozenset,定义了哪些关键点要连接mp_drawing.DrawingSpec(color=(255, 255, 255), # 姿态关键点thickness=2,circle_radius=2),mp_drawing.DrawingSpec(color=(174, 139, 45), # 连线颜色thickness=2,circle_radius=2),)cv2.imshow('MediaPipe Pose Estimation', img_copy)cv2.waitKey(0)if __name__ == '__main__':main()
import cv2
import numpy as np
import mediapipe as mpdef video():# 读取摄像头# cap = cv2.VideoCapture(0)# 读取视频cap = cv2.VideoCapture('data/1.mp4')mp_pose = mp.solutions.posepose = mp_pose.Pose(static_image_mode=False,min_detection_confidence=0.5, min_tracking_confidence=0.5)while cap.isOpened():ret, frame = cap.read()if not ret:break# 摄像头# continue# 将 BGR 图像转换为 RGBrgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)# 进行姿势估计results = pose.process(rgb_frame)if results.pose_landmarks is not None:# 绘制关键点和连接线mp_drawing = mp.solutions.drawing_utilsmp_drawing.draw_landmarks(frame, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)# 显示结果cv2.imshow('MediaPipe Pose Estimation', frame)if cv2.waitKey(1) & 0xFF == ord('q'):break# 释放资源cap.release()cv2.destroyAllWindows()if __name__ == '__main__':video()
1.3 新版 solution API
旧版 API 并不能检测多个姿态,新版 API 可以实现多个姿态检测
选项 | 含义 | 值范围 | 默认值 |
---|---|---|---|
running_mode | 设置任务的运行模式,有三种模式可选: IMAGE: 单一照片输入. VIDEO: 视频. LIVE_STREAM: 输入数据(例如来自摄像机)为实时流。在此模式下,必须调用 resultListener 来设置侦听器以异步接收结果. | {IMAGE, VIDEO, LIVE_STREAM } | IMAGE |
num_poses | 姿势检测器可以检测到的最大姿势数 | Integer > 0 | 1 |
min_pose_detection_confidence | 姿势检测被认为是成功的最小置信度得分 | Float [0.0,1.0] | 0.5 |
min_pose_presence_confidence | 姿态检测中的姿态存在分数的最小置信度分数 | Float [0.0,1.0] | 0.5 |
min_tracking_confidence | 姿势跟踪被视为成功的最小置信度分数 | Float [0.0,1.0] | 0.5 |
output_segmentation_masks | 是否为检测到的姿势输出分割掩码 | Boolean | False |
result_callback | 将结果侦听器设置为在Pose Landmark处于LIVE_STREAM 模式时异步接收Landmark结果。仅当运行模式设置为LIVE_STREAM 时才能使用 | ResultListener | N/A |
from mediapipe import solutions
from mediapipe.framework.formats import landmark_pb2
import cv2
import numpy as np
import mediapipe as mpmp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.posedef draw_landmarks_on_image(rgb_image, detection_result):pose_landmarks_list = detection_result.pose_landmarksannotated_image = np.copy(rgb_image)# Loop through the detected poses to visualize.for idx in range(len(pose_landmarks_list)):pose_landmarks = pose_landmarks_list[idx]# Draw the pose landmarks.pose_landmarks_proto = landmark_pb2.NormalizedLandmarkList()pose_landmarks_proto.landmark.extend([landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in pose_landmarks])solutions.drawing_utils.draw_landmarks(annotated_image,pose_landmarks_proto,solutions.pose.POSE_CONNECTIONS,solutions.drawing_styles.get_default_pose_landmarks_style())return annotated_imagedef newSolution():BaseOptions = mp.tasks.BaseOptionsPoseLandmarker = mp.tasks.vision.PoseLandmarkerPoseLandmarkerOptions = mp.tasks.vision.PoseLandmarkerOptionsVisionRunningMode = mp.tasks.vision.RunningModemodel_path = 'data/pose_landmarker_heavy.task'options = PoseLandmarkerOptions(base_options=BaseOptions(model_asset_path=model_path),running_mode=VisionRunningMode.IMAGE,num_poses=10)FILE_PATH = 'data/4.jpg'image = cv2.imread(FILE_PATH)img = mp.Image.create_from_file(FILE_PATH)with PoseLandmarker.create_from_options(options) as detector:res = detector.detect(img)image = draw_landmarks_on_image(image, res)cv2.imshow('MediaPipe Pose Estimation', image)cv2.waitKey(0)if __name__ == '__main__':newSolution()
1.4 俯卧撑计数
通过计算胳膊弯曲角度来判断状态,并计算俯卧撑个数
import cv2
import mediapipe as mp
import numpy as npmp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.posedef calculate_angle(a, b, c):radians = np.arctan2(c.y - b.y, c.x - b.x) - \np.arctan2(a.y - b.y, a.x - b.x)angle = np.abs(np.degrees(radians))return angle if angle <= 180 else 360 - angledef angle_of_arm(landmarks, shoulder, elbow, wrist):shoulder_coord = landmarks[mp_pose.PoseLandmark[shoulder].value]elbow_coord = landmarks[mp_pose.PoseLandmark[elbow].value]wrist_coord = landmarks[mp_pose.PoseLandmark[wrist].value]return calculate_angle(shoulder_coord, elbow_coord, wrist_coord)def count_push_up(landmarks, counter, status):left_arm_angle = angle_of_arm(landmarks, "LEFT_SHOULDER", "LEFT_ELBOW", "LEFT_WRIST")right_arm_angle = angle_of_arm(landmarks, "RIGHT_SHOULDER", "RIGHT_ELBOW", "RIGHT_WRIST")avg_arm_angle = (left_arm_angle + right_arm_angle) // 2if status:if avg_arm_angle < 70:counter += 1status = Falseelse:if avg_arm_angle > 160:status = Truereturn counter, statusdef main():cap = cv2.VideoCapture('data/test.mp4')counter = 0status = Falsewith mp_pose.Pose(min_detection_confidence=0.7, min_tracking_confidence=0.7) as pose:while cap.isOpened():success, image = cap.read()if not success:print("empty camera")breakresult = pose.process(image)if result.pose_landmarks:mp_drawing.draw_landmarks(image, result.pose_landmarks, mp_pose.POSE_CONNECTIONS)counter, status = count_push_up(result.pose_landmarks.landmark, counter, status)cv2.putText(image, text=str(counter), org=(100, 100), fontFace=cv2.FONT_HERSHEY_SIMPLEX,fontScale=4, color=(255, 255, 255), thickness=2, lineType=cv2.LINE_AA)cv2.imshow("push-up counter", image)key = cv2.waitKey(1)if key == ord('q'):breakcap.release()if __name__ == '__main__':main()
二、手部追踪
2.1 手部姿态
2.2 API 使用
照片
选项 | 含义 | 值范围 | 默认值 |
---|---|---|---|
static_image_mode | 如果设置为 False,会将输入图像视为视频流。它将尝试在第一个输入图像中检测手,并在成功检测后进一步定位手部标志。在随后的图像中,一旦检测到所有 max_num_hands 手并定位了相应的手部标志,它就会简单地跟踪这些标志,而不会调用其他检测,直到它失去对任何手的跟踪。这减少了延迟,是处理视频帧的理想选择。如果设置为 True,则对每个输入图像运行手动检测,非常适合处理一批静态(可能不相关的)图像 | Boolean | False |
max_num_hands | 要检测的最大手数 | Integer | 2 |
model_complexity | 模型的复杂度,准确性和推理延迟通常随着模型复杂性的增加而增加 | {0,1} | 1 |
min_detection_confidence | 检测模型的最小置信度值 ,用于将检测视为成功 | Float [0.0,1.0] | 0.5 |
min_tracking_confidence | 来自手部跟踪模型的最小置信度值 , 用于将手部标记视为成功跟踪,否则将在下一个输入图像上自动调用检测。将其设置为更高的值可以提高解决方案的可靠性,但代价是延迟更高。如果static_image_mode为 True,则忽略,其中手部检测仅对每个图像运行。 | Float [0.0,1.0] | 0.5 |
import cv2
import mediapipe as mpmp_hands = mp.solutions.handsdef main():cv2.namedWindow("MediaPipe Hand", cv2.WINDOW_NORMAL)hands = mp_hands.Hands(static_image_mode=False, max_num_hands=2,min_detection_confidence=0.5, min_tracking_confidence=0.5)img = cv2.imread('data/finger/1.jpg')rgb_frame = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 进行手部追踪results = hands.process(rgb_frame)if results.multi_hand_landmarks:# 绘制手部关键点和连接线for hand_landmarks in results.multi_hand_landmarks:mp_drawing = mp.solutions.drawing_utilsmp_drawing.draw_landmarks(img, hand_landmarks, mp_hands.HAND_CONNECTIONS)# 显示结果cv2.imshow('MediaPipe Hand', img)cv2.waitKey(0)if __name__ == '__main__':main()
import cv2
import mediapipe as mpmp_hands = mp.solutions.handsdef video():hands = mp_hands.Hands(static_image_mode=False, max_num_hands=2,min_detection_confidence=0.4, min_tracking_confidence=0.4)# 读取视频cap = cv2.VideoCapture('data/hand.mp4')while cap.isOpened():ret, frame = cap.read()if not ret:break# 将 BGR 图像转换为 RGBrgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)# 进行手部追踪results = hands.process(rgb_frame)if results.multi_hand_landmarks:# 绘制手部关键点和连接线for hand_landmarks in results.multi_hand_landmarks:mp_drawing = mp.solutions.drawing_utilsmp_drawing.draw_landmarks(frame, hand_landmarks, mp_hands.HAND_CONNECTIONS)# 显示结果cv2.imshow('MediaPipe Hand Tracking', frame)if cv2.waitKey(1) & 0xFF == ord('q'):break# 释放资源cap.release()cv2.destroyAllWindows()if __name__ == '__main__':video()
2.3 识别手势含义
使用 KNN 对手势进行预测
import mediapipe as mp
import numpy as np
import cv2
from mediapipe.framework.formats.landmark_pb2 import NormalizedLandmarkList
from sklearn.neighbors import KNeighborsClassifiermp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands# 压缩特征点
class Embedder(object):def __init__(self):self._landmark_names = mp.solutions.hands.HandLandmarkdef __call__(self, landmarks):# modify the call func can both handle a 3-dim dataset and a single referencing result.if isinstance(landmarks, np.ndarray):if landmarks.ndim == 3: # for datasetembeddings = []for lmks in landmarks:embedding = self.__call__(lmks)embeddings.append(embedding)return np.array(embeddings)elif landmarks.ndim == 2: # for inferenceassert landmarks.shape[0] == len(list(self._landmark_names)), 'Unexpected number of landmarks: {}'.format(landmarks.shape[0])# Normalize landmarks.landmarks = self._normalize_landmarks(landmarks)# Get embedding.embedding = self._get_embedding(landmarks)return embeddingelse:print('ERROR: Can NOT embedding the data you provided !')else:if isinstance(landmarks, list): # for datasetembeddings = []for lmks in landmarks:embedding = self.__call__(lmks)embeddings.append(embedding)return np.array(embeddings)elif isinstance(landmarks, NormalizedLandmarkList): # for inference# Normalize landmarks.landmarks = np.array([[lmk.x, lmk.y, lmk.z]for lmk in landmarks.landmark], dtype=np.float32)assert landmarks.shape[0] == len(list(self._landmark_names)), 'Unexpected number of landmarks: {}'.format(landmarks.shape[0])landmarks = self._normalize_landmarks(landmarks)# Get embedding.embedding = self._get_embedding(landmarks)return embeddingelse:print('ERROR: Can NOT embedding the data you provided !')def _get_center(self, landmarks):# MIDDLE_FINGER_MCP:9return landmarks[9]def _get_size(self, landmarks):landmarks = landmarks[:, :2]max_dist = np.max(np.linalg.norm(landmarks - self._get_center(landmarks), axis=1))return max_dist * 2def _normalize_landmarks(self, landmarks):landmarks = np.copy(landmarks)# Normalizecenter = self._get_center(landmarks)size = self._get_size(landmarks)landmarks = (landmarks - center) / sizelandmarks *= 100 # optional, but makes debugging easier.return landmarksdef _get_embedding(self, landmarks):# we can add and delete any embedding featurestest = np.array([np.dot((landmarks[2]-landmarks[0]),(landmarks[3]-landmarks[4])), # thumb bentnp.dot((landmarks[5]-landmarks[0]), (landmarks[6]-landmarks[7])),np.dot((landmarks[9]-landmarks[0]), (landmarks[10]-landmarks[11])),np.dot((landmarks[13]-landmarks[0]),(landmarks[14]-landmarks[15])),np.dot((landmarks[17]-landmarks[0]), (landmarks[18]-landmarks[19]))]).flatten()return testdef init_knn(file='data/dataset_embedded.npz'):npzfile = np.load(file)X = npzfile['X']y = npzfile['y']neigh = KNeighborsClassifier(n_neighbors=5)neigh.fit(X, y)return neighdef hand_pose_recognition(stream_img):# For static images:stream_img = cv2.cvtColor(stream_img, cv2.COLOR_BGR2RGB)embedder = Embedder()neighbors = init_knn()with mp_hands.Hands(static_image_mode=True,max_num_hands=2,min_detection_confidence=0.5) as hands:results = hands.process(stream_img)if not results.multi_hand_landmarks:return ['no_gesture'], stream_imgelse:annotated_image = stream_img.copy()multi_landmarks = results.multi_hand_landmarks# KNN inferenceembeddings = embedder(multi_landmarks)hand_class = neighbors.predict(embeddings)# hand_class_prob = neighbors.predict_proba(embeddings)# print(hand_class_prob)for landmarks in results.multi_hand_landmarks:mp_drawing.draw_landmarks(annotated_image,landmarks,mp_hands.HAND_CONNECTIONS,mp_drawing_styles.get_default_hand_landmarks_style(),mp_drawing_styles.get_default_hand_connections_style())return hand_class, annotated_image# 手势有10种,数字有8种,1-10之间7和9没有,还有两种是OK手势,和蜘蛛侠spide手势
# `eight_sign`, `five_sign`, `four_sign`, `ok`, `one_sign`, `six_sign`, `spider`, `ten_sign`, `three_sign`, `two_sign`def image():FILE_PATH = 'data/ok.png'img = cv2.imread(FILE_PATH)handclass, img_final = hand_pose_recognition(img)cv2.putText(img_final, text=handclass[0], org=(200, 50), fontFace=cv2.FONT_HERSHEY_SIMPLEX,fontScale=2, color=(255, 255, 255), thickness=2, lineType=cv2.LINE_AA)cv2.imshow('test', cv2.cvtColor(img_final, cv2.COLOR_RGB2BGR))cv2.waitKey(0)def video():cap = cv2.VideoCapture('data/ok.mp4')while cap.isOpened():ret, frame = cap.read()if not ret:breakhandclass, img_final = hand_pose_recognition(frame)cv2.putText(img_final, text=handclass[0], org=(50, 50), fontFace=cv2.FONT_HERSHEY_SIMPLEX,fontScale=2, color=(255, 0, 0), thickness=2, lineType=cv2.LINE_AA)cv2.imshow('test', cv2.cvtColor(img_final, cv2.COLOR_RGB2BGR))if cv2.waitKey(1) & 0xFF == ord('q'):breakif __name__ == '__main__':video()
参考
- https://developers.google.cn/mediapipe/solutions/
- https://github.com/googlesamples/mediapipe
- https://github.com/Furkan-Gulsen/Sport-With-AI
- https://github.com/Chuanfang-Neptune/DLAV-G9