分布式与一致性协议之一致哈希算法(二)

一致哈希算法

使用哈希算法有什么问题

通过哈希算法,每个key都可以寻址到对应的服务器,比如,查询key是key-01,计算公式为hash(key-01)%3,警告过计算寻址到了编号为1的服务器节点A,如图所示。
在这里插入图片描述

但如果服务器数量发生变化,我们基于新的服务器数量来执行哈希算法时,就会出现路由寻址失败的秦广,导致Proxy无法找到之前寻址到的那个服务器节点,这是为什么呢?
想象以下,加入3个节点不能满足当前的业务虚要,这时我们增加了一个节点,节点数量从3变为4,那么之前的hash(key-01)%3=1就变成了hash(key-01)%4=X,因为取模运算发生了变化,所以这个X大概率不是1(可能是2),这时你再查询,就会找不到数据,因为key-01对应的数据存储再节点A上,而不是节点B上,如图所示。
在这里插入图片描述

同样的道理,如果我们需要下线1个服务器节点(也就是缩容),也会存在类似的问题。而解决这个问题的办法在于我们要迁移数据,基于新的计算公式hash(key-01)%4来重新对数据和节点做映射。需要注意的是,数据的迁移成本是非常高的。
为了便于理解,我们用一个示例来说明。对于1000万个key 的3节点KV存储,如果我们增加1个节点,即3节点集群变为4节点集群,则需要迁移75%的数据,如代码所示

package mainimport (
"flag"
"fmt"
)var keysPtr = flag.Int("keys", 10000000, "key number")
var nodesPtr = flag.Int("nodes", 3, "node number of old cluster")
var newNodesPtr = flag.Int("new-nodes", 4, "node number of new cluster")func hash(key int, nodes int) int {
return key % nodes
}func main() {flag.Parse()
var keys = *keysPtr
var nodes = *nodesPtr
var newNodes = *newNodesPtrmigrate := 0
for i := 0; i < keys; i++ {
if hash(i, nodes) != hash(i, newNodes) {
migrate++
}
}migrateRatio := float64(migrate) / float64(keys)
fmt.Printf("%f%%\n", migrateRatio*100)
}
go run ./hash.go -keys 10000000 -nodes 3 -new-nodes 4
74.999980%

从示例代码的输出可以看到,迁移成本非常高昂,这在实际生产环境中也是无法想象的

如何使用一致哈希算法实现哈希寻址

一致哈希算法也采用取模运算,但与哈希算法是对节点的数量进行取模不同,一致哈希算法是对2 ^ 32进行取模。你可以想象以下,一致哈希算法是将整个哈希空间组织成一个虚拟的圆环,也就是哈希换,如图所示,在这里插入图片描述
从图中可以看到,哈希环的空间是按顺时针方向组织的,圆环的正上方点的点代表0,0点右侧的第一个点代表1,以此类推,2、3、4、5、6…知道2 ^ 32-1,也就是说0点左侧的第一个点代表2^32-1.在一致哈希算法中,你可以通过执行哈希算法(为了演示方便,假设哈希算法函数为c-hash())将节点映射到哈希环上,比如选择节点的主机名作为参数进行c-hash()函数运算,确定每个节点在哈希环上的位置,如图所示。在这里插入图片描述
当需要对指定的key的值进行读写的时候,你可以通过下面两步进行寻址:

  • 1.首先,将key作为参数进行c-hash()函数运算,计算哈希值,并确定此key在环上的位置
  • 2.然后,从这个位置沿着哈希环顺时针"行走",遇到的第一节点就是key对应的节点
    为了更好地理解如何通过一致哈希寻址,用一个示例来说明。假设key-01、key-02、key-03 3个key经过哈希算法c-hash()函数计算后,在哈希环上的位置如图所示。
    在这里插入图片描述

那么根据一致哈希算法,key-01将寻址到节点A,key-02将寻址到节点B,key-03将寻址到节点C.你可能会问,那一致哈希是如何避免哈希算法的问题的呢?
假设现在有一个节点故障了(比如节点C),如图所示。在这里插入图片描述

可以看到,key-01和key-02不会受到影响,而key-03得寻址将被重定位到A.一般来说,在一致哈希算法中,如果某个节点宕机不可用了,那么受影响的数据仅仅是会寻址到此节点和前一节点之间的数据。比如当节点C宕机时,受影响的数据是会寻址到节点B和节点C之间的数据(例如key-03),而寻址到其他哈希环空间的数据(例如key-01)不会受到影响。如果此时集群不能满足业务的需求,则需要扩容一个节点(也就是增加一个节点,比如D),如图所示.
在这里插入图片描述

可以看到,key-01、key-02不会受到影响,而key-03的寻址被重定位到新节点D.一般而言,在一致哈希算法中,如果增加一个节点,受影响的数据仅仅是会寻址到新节点和前一节点之间的数据,其他数据则不会受到影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/324857.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

libcity笔记:详细流程(以DeepMove为例)

0 前置操作 这边我选择了gowalla的前1000条数据做例子&#xff1a; 0.1 生成样例dyna import pandas as pd geopd.read_csv(/home_nfs/liushuai/Bigscity-LibCity/raw_data/gowalla_test/gowalla.dyna)geo_tstgeo.iloc[:1000,:] geo_tst geo_tst.to_csv(/home_nfs/liushuai/…

【RAG 博客】RAG 应用中的 Routing

Blog&#xff1a;Routing in RAG-Driven Applications ⭐⭐⭐⭐ 根据用户的查询意图&#xff0c;在 RAG 程序内部使用 “Routing the control flow” 可以帮助我们构建更实用强大的 RAG 程序。路由模块的关键实现就是一个 Router&#xff0c;它根据 user query 的查询意图&…

docker私有仓库registry

简介 Docker私有仓库的Registry是一个服务&#xff0c;主要用于存储、管理和分发Docker镜像。具体来说&#xff0c;Registry的功能包括&#xff1a; 存储镜像&#xff1a;Registry提供一个集中的地方来存储Docker镜像&#xff0c;包括镜像的层次结构和元数据。 版本控制&…

【Unity 实用工具篇】 | UIEffect 实现一系列UGUI特效,灰度、负片、像素化特效

前言【Unity 实用工具篇】 | UIEffect 实现一系列UGUI特效,灰度、负片、像素化特效一、UGUI特效插件:UIEffect1.1 介绍1.2 效果展示1.3 使用说明及下载二、组件属性面板三、代码操作组件四、组件常用方法示例4.1 使用灰度特效做头像(关卡)选择总结

【C/C++笔试练习】DNS设置文件、应用层、Dos攻击、DNS服务、DNS、子网划分、http状态、路由设置、TCP连接、HTTP状态码、剪花布条、客似云来

文章目录 C/C笔试练习选择部分&#xff08;1&#xff09;DNS设置文件&#xff08;2&#xff09;应用层&#xff08;3&#xff09;Dos攻击&#xff08;4&#xff09;DNS服务&#xff08;5&#xff09;DNS&#xff08;6&#xff09;子网划分&#xff08;7&#xff09;http状态&am…

日报表定时任务优化历程

报表需求背景 报表是一个很常见的需求&#xff0c;在项目中后期往往会需要加多种维度的一些统计信息&#xff0c;今天就来谈谈上线近10个月后的一次报表优化优化之路&#xff08;从一天报表跑需要五分钟&#xff0c;优化至秒级&#xff09; 需求&#xff1a;对代理商进行日统计…

视频合并有妙招:视频剪辑一键操作,批量嵌套合并的必学技巧

在数字时代的今天&#xff0c;视频已经成为我们日常生活和工作中不可或缺的一部分。无论是记录生活点滴&#xff0c;还是制作专业项目&#xff0c;视频合并都是一个常见的需求。然而&#xff0c;对于许多人来说&#xff0c;视频合并却是一个复杂且繁琐的过程。现在有云炫AI智剪…

第七届精武杯部分wp

第一部分&#xff1a;计算机和手机取证 1.请综合分析计算机和手机检材&#xff0c;计算机最近一次登录的账户名是 答案&#xff1a;admin 创建虚拟机时直接给出了用户名 2. 请综合分析计算机和手机检材&#xff0c;计算机最近一次插入的USB存储设备串号是 答案&#xff1a…

6.python网络编程

文章目录 1.生产者消费者-生成器版2.生产者消费者--异步版本3.客户端/服务端-多线程版4.IO多路复用TCPServer模型4.1Select4.2Epoll 5.异步IO多路复用TCPServer模型 1.生产者消费者-生成器版 import time# 消费者 def consumer():cnt yieldwhile True:if cnt < 0:# 暂停、…

创新指南 | 生成式AI如何引领企业创新未来?

2023年麦肯锡全球数字战略调查了1000多名受访者&#xff0c;发现&#xff1a;建立创新文化的组织与它们应用包括生成式AI在内的最新数字技术提高产出的能力之间有着惊人的强关联。 本文探讨了顶尖创新企业采取的五项行动&#xff0c;使它们与同行之间拉开距离&#xff0c;并在使…

【Linux系统】进程

本篇博客整理了进程的多方面知识&#xff0c; 旨在从进程的概念、管理、属性、创建等方面让读者更加全面系统地理解进程和操作系统的管理设计。 目录 一、进程是什么 二、操作系统如何管理进程 1.描述进程 PCB 2.组织进程 3.再谈进程和进程管理 三、Linux下的进程管理 1…

Docker Compose:简化多容器应用部署

序言 在当今的软件开发中&#xff0c;容器化技术的使用已经很普遍了。而 Docker 作为其中最流行的容器化平台之一&#xff0c;为开发者提供了方便、快捷、一致的开发和部署环境。但是&#xff0c;当我们的应用开始变得更加复杂&#xff0c;涉及到多个容器时&#xff0c;手动管…

在 Kubernetes 上运行 Apache Spark 进行大规模数据处理的实践

在刚刚结束的 Kubernetes Community Day 上海站&#xff0c;亚马逊云科技在云原生分论坛分享的“在 Kunernets 上运行 Apache Spark 进行大规模数据处理实践”引起了现场参与者的关注。开发者告诉我们&#xff0c;为了充分利用 Kubernetes 的高可用设计、弹性&#xff0c;在越来…

AI + Web3 如何打造全新创作者经济模型?

可编程 IP 的兴起&#xff0c;借助人工智能极大提高创作效率和效能&#xff0c;让 Web3 用户体会到了自主创作和产品制作的乐趣。然而&#xff0c;你知道 AI 时代来临的背景下&#xff0c;创作者经济模型又该如何在 Web3 技术的加持下走向更成熟的运作轨道吗&#xff1f;第 43 …

再谈毕业论文设计投机取巧之IVR自动语音服务系统设计(信息与通信工程A+其实不难)

目录 举个IVR例子格局打开&#xff0c;万物皆能IVR IVR系统其实可盐可甜。还能可圈可点。 戎马一生&#xff0c;归来依然IVR。 举个IVR例子 以下是IVR系统的一个例子。 当您拨打电话进入IVR系统。 首先检验是否为工作时间。 如是&#xff0c;您将被送入ivr-lang阶段&#xff0…

QT day5 作业

服务器头文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTcpServer> //服务器类 #include <QTcpSocket> //客户端类 #include <QList> //链表类 #include <QMessageBox> //消息对话框类 #include <QDebu…

【C语言】精品练习题

目录 题目一&#xff1a; 题目二&#xff1a; 题目三&#xff1a; 题目四&#xff1a; 题目五&#xff1a; 题目六&#xff1a; 题目七&#xff1a; 题目八&#xff1a; 题目九&#xff1a; 题目十&#xff1a; 题目十一&#xff1a; 题目十二&#xff1a; 题目十…

大文件传输的好帮手Libarchive:功能强大的开源归档文件处理库

在数字化时代&#xff0c;文件的存储和传输对于企业的日常运作至关重要。但是&#xff0c;服务器中的压缩文件往往无法直接查看或预览&#xff0c;这给用户带来了不便。为了解决这一问题&#xff0c;在线解压功能的开发变得尤为重要。接下来&#xff0c;小编将介绍一个能够实现…

RabbitMQ(安装配置以及与SpringBoot整合)

文章目录 1.基本介绍2.Linux下安装配置RabbitMQ1.安装erlang环境1.将文件上传到/opt目录下2.进入/opt目录下&#xff0c;然后安装 2.安装RabbitMQ1.进入/opt目录&#xff0c;安装所需依赖2.安装MQ 3.基本配置1.启动MQ2.查看MQ状态3.安装web管理插件4.安装web管理插件超时的解决…

使用xtuner微调InternLM-Chat-7B

1. 安装xtuner #激活环境 source activate test_llm # 安装xtuner pip install xtuner#还有一些依赖项需要安装 future>0.6.0 cython lxml>3.1.0 cssselect mmengine 2. 创建一个ft-oasst1 数据集的工作路径&#xff0c;进入 mkdir ft-oasst1 cd ft-oasst1 3.XTune…