Linux系统编程:进程控制

1.进程创建

1.1 fork函数

        fork()通过复制调用进程来创建一个新进程。新进程称为子进程,是调用进程的精确副本
进程,但以下几点除外:

  • 子进程有自己的PID,此PID与任何现有进程组的ID不匹配
  • 子进程的父进程ID与父进程的进程ID相同。
  • 子进程没有继承父进程的内存锁
  • 进程资源利用率(getrusage(2))和CPU时间计数器(times(2))在子进程中重置为零
  • 子进程的挂起信号集最初为空
  • 子进程不能继承父进程的信号调整
  • 子进程不从父进程继承记录锁
  • 子进程不从父进程继承计时器
  • 子进程不继承父进程未完成的异步I/O操作,也不继承任何异步操作从它的父进程中获取同步I/O上下文

#include <unistd.h>
pid_t fork();
返回值:fork成功则子进程PID被返回给父进程,0被返回给子进程。失败,-1被返回给父进程,没有子进程创建。-- 给父进程返回子进程的pid,子进程返回0,是因为一个父进程可以有多个子进程,儿子进程只能有一个父进程。

 当一个进程调用fork之后,就有两个二进制代码相同的进程。而且它们都运行到相同的地方。但每个进程都将可执行自己的代码,看如下程序:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>int g_val = 0;
int main()
{pid_t id = fork();if(id < 0){perror("fork");return 0;}else if(id == 0){ //childg_val = 100;printf("child[%d]: %d : %p\n", getpid(), g_val, &g_val);}else{ //parentprintf("parent[%d]: %d : %p\n", getpid(), g_val, &g_val);}sleep(1);return 0;
}

执行结果如下: 

 

由结果可以得出,fork之后,父子进程各自执行自己的代码块

fork调用失败的原因: 系统中有太多的进程 实际用户的进程数超过了限制

1.2 写时拷贝

        通常,父子代码共享,父子在不写入时,数据也是共享的,当任意一方试图写入,便以写时拷贝的方式各自一份副 本。具体见下图:

2.进程终止

进程退出场景:

  • 代码运行结束,结果正确
  • 代码运行结束,结果错误
  • 代码异常终止

 进程退出方式:

  • 从main返回 return n; 
    执行 return n 等同于执行 exit(n), 因为调用 main 的运行时函数会将 main 的返
    回值当做 exit 的参数。
  • 在任意地方调用exit(errno) -- 库函数,终止进程,主动刷新缓冲区
  • _exit() -- 系统调用,终止进程不会刷新缓冲区
  • ctrl + c -- 信号终止

 echo $?  :看记录最后一个进程在命令行执行完毕时对应的退出码

#include <unistd.h>
void _exit(int status);

参数:status定义了进程的终止状态,父进程通过wait来获取该值 虽然statusint,但是仅有低8位可以被父进程所用

#include <unistd.h>
void exit(int status);

exit最后也会调用exit, 但在调用exit之前,还做了其他工作:

1. 执行用户通过 atexit on_exit 定义的清理函数。
2. 关闭所有打开的流,所有的缓存数据均被写入
3. 调用 _exit

3.进程等待 

        检测子进程推出信息,将子进程的退出信息通过status拿回来。

3.1 进程等待必要性

  • 之前讲过,子进程退出,父进程如果不管不顾,就可能造成 僵尸进程 ,进而造成内存泄漏。
  • 另外,进程一旦变成僵尸状态,那就刀枪不入, kill -9 也无能为力
  • 最后,父进程派给子进程的任务完成的如何,我们需要知道。
  • 父进程通过进程等待的方式,回收子进程资源,获取子进程退出信息

3.2 进程等待的方法

wait方法

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int* status);
参数:获取子进程的退出状态

返回值:成功,返回终止子进程的pid,失败返回-1

 waitpid方法

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(pid_t pid, int *status, int options);
参数:pid:pid=-1,等待任意子进程,与wait等效;pid>0,等待其进程id与pid相等的子进程

           status:输出型参数,拿到子进程的退出结果。-- 有自己的为图结构,只关心低16
                        个比特位()0-15,
                        次低八位(8-15):进程退出状态(结果是否正确) -- 设为:(status>>8) &0XFF
                        低七位(0-7):进程终止信号(是否正常结束) -- 设为:status&0X7F
           options:先设为0
返回值:成功,返回收集到的子进程的pid

              若无可以收集的一推出的子进程,return 0;

               若调用出错,返回-1,这时,errno会被设置为相应的值,以指示错误所在。

 WIFEXITED(status): 若为正常终止子进程返回的状态,则为真。(查看进程是否是正常退出)

WEXITSTATUS(status): WIFEXITED非零,提取子进程退出码。(查看进程的退出码)        

 下面看一段示例代码:

#include<stdlib.h>
#include<stdio.h>
#include<unistd.h>
#include<sys/wait.h>
#include<sys/types.h>int main()
{pid_t id = fork();if(id == 0){int cnt = 5;while(cnt){printf("我是子进程pid:%d, 父进程:%d, cnt = %d\n", getpid(), getppid(), cnt--);sleep(1);}// int d = 10/0;exit(10);}sleep(7);int status = 0;pid_t ret = waitpid(id, &status, 0);if(id > 0){printf("wait success: %d, sig_number: %d, child_exit_code: %d\n", ret, (status & 0x7F), (status>>8)&0xFF);}sleep(5);return 0;
}

结果下图所示:

第一个图为我执行kill -9 22287得到的结果,进程收到9号信号,进程终止

第二个图为程序正常运行结束的结果。

阻塞等待和非阻塞等待:

        阻塞等待:子进程未推出时,父进程不调用一直等待直到子进程结束。

        非阻塞等待:在与逆行期间一直询问子进程是否结束 waitpid()函数第三个参数设置为WNOHANG。
非阻塞等待的好处:

  • 不会占用父进程的所有精力,可以在轮询期间做别的事情

下面为非阻塞式等待的代码:

#include <stdio.h> 
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
int main()
{pid_t pid;pid = fork();if(pid < 0){printf("%s fork error\n",__FUNCTION__);return 1;}else if( pid == 0 ){ //childprintf("child is run, pid is : %d\n",getpid());sleep(5);exit(1);} else{int status = 0;pid_t ret = 0;do{ret = waitpid(-1, &status, WNOHANG);//非阻塞式等待if( ret == 0 ){printf("child is running\n");}sleep(1);}while(ret == 0);if( WIFEXITED(status) && ret == pid ){printf("wait child 5s success, child return code is :%d.\n",WEXITSTATUS(status));}else{printf("wait child failed, return.\n");return 1;}}return 0;
}

可以看到,父进程在等待子进程的同时还会执行打印语句。若为非阻塞等待,会一直卡在等待的环节。 

总结:

进程等待:

  • 是什么? -- 通过系统调用,让父进程等待子进程的方式
  • 为什么? -- 释放子进程的僵尸状态,获取子进程状态
  • 怎么等? -- wait/waitpid  阻塞等待/非阻塞等待

4.进程程序替换

        相当于用自己的程序把别人的程序跑起来,支持不同语言(任何后端语言)的替换

4.1 创建子进程的目的

  • 想让子进程执行父进程代码的一部分 -- 执行父进程对应的磁盘代码中的一部分
  • 想让子进程执行一个全新的程序 -- 让紫禁城想办法,家在磁盘上指定的程序,执行新程序的代码和数据

4.2 替换原理

        就是将指定程序的代码和数据加载带指定的位置,进程替换时并没有创建新的进程。在子进程中调用execl函数并不会影响父进程的执行(进程具有独立性)。OS感觉到替换后,则进行写时拷贝,重新分配内存--子进程通过页表重新映射到新的内存。

4.3 替换函数

#include <unistd.h>`
int execl(const char *path, const char *arg, ...);
参数:path:路径
            arg:在命令行怎么执行就怎么传参
...:可变参数列表
返回值:执行失败返回-1,并继续执行源代码,成功不会返回值。
int execlp(const char *file, const char *arg, ...);
p:代表的就是如何找程序的功能,带p字符的函数,不用告诉我替换程序的路径,只需要知道时谁,会自动在环境变量PATH中进行可执行程序的查找。
int execle(const char *path, const char *arg, ...,char *const envp[]);
int execv(const char *path, char *const argv[]);
v
:vector,可以将所有的可执行参数,放入到数组(必须以空作为结束)中,不用可变参数传参
int execvp(const char *file, char *const argv[]);
 
int execve(const char *path, char *const argv[], char *const envp[]); -- 允许自定义环境变量

所有的execl* 系列的接口都必须以NULL结尾 

下面为各个接口的演示:

#include<stdio.h>
#include<unistd.h>
#include<stdlib.h>
#include<assert.h>
#include<sys/wait.h>
#include<sys/types.h>int main()
{// 用我们的程序将别人的程序执行起来// .c -> exe -> load -> process -> 运行 -> 执行我们现在所写的代码printf("process is running...\n");// 只要是个函数,掉用就有可能失败 就是没有替换成功 继续执行下面的原代码// 只有错误时会返回,返回值为-1execl("/usr/bin/ls"/*要执行哪个程序*/, "ls","-a", "-l", "--color=auto", NULL/*你想怎么执行*/);  // 所有的execl* 系列的接口都必须以NULL结尾printf("execl\n");// 为何下面的printf没有执行呢? printf是在execl之后的,execl执行完毕后,代码已经完全被替换 开始新的程序的代码了printf("process running done...\n");return 0;
}

 这个代码使用execl接口将我们的程序替换为了命令行命令,ls -a -l,结果如下:

#include<stdio.h>
#include<unistd.h>
#include<stdlib.h>
#include<assert.h>
#include<sys/wait.h>
#include<sys/types.h>int main(int argc, char *argv[])
{printf("process is running\n!");pid_t id = fork();assert(id!=-1);if(id == 0){sleep(1);execlp("ls", "ls","-a", "-l", NULL);printf("原子进程!\n");exit(10);}// 下面为父进程的代码,子进程的替换不会影响父进程的代码int status = 0;int ret = waitpid(id, &status, 0);if(ret > 0) printf("wait success: exit code:%d, sig:%d\n", (status>>8) & 0xFF, status & 0x7F);return 0;
}

 有这段代码也可以看出,子进程在进行程序替换时,是不会影响父进程的

#include<stdio.h>
#include<unistd.h>
#include<stdlib.h>
#include<assert.h>
#include<sys/wait.h>
#include<sys/types.h>int main(int argc, char *argv[])
{printf("process is running\n!");pid_t id = fork();assert(id!=-1);if(id == 0){sleep(1);char *arv_[] = { "ls","-a", "-l", NULL };execv("/usr/bin/ls", arv_);exit(10);}// 下面为父进程的代码,子进程的替换不会影响父进程的代码int status = 0;int ret = waitpid(id, &status, 0);if(ret > 0) printf("wait success: exit code:%d, sig:%d\n", (status>>8) & 0xFF, status & 0x7F);return 0;
}

其他几个与上面的类似,这里就不一一列举了。除了可以替换系统命令,还可以将程序替换为自己的程序,下面用一个接口execvp来演示。

#include<stdio.h>
#include<unistd.h>
#include<stdlib.h>
#include<assert.h>
#include<sys/wait.h>
#include<sys/types.h>int main(int argc, char *argv[])
{printf("process is running\n!");pid_t id = fork();assert(id!=-1);if(id == 0){sleep(1);char *arv_[] = { "mycpp", NULL };execvp("./mybin", arv_);exit(10);}// 下面为父进程的代码,子进程的替换不会影响父进程的代码int status = 0;int ret = waitpid(id, &status, 0);if(ret > 0) printf("wait success: exit code:%d, sig:%d\n", (status>>8) & 0xFF, status & 0x7F);return 0;
}

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/326731.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【全开源】废品回收微信小程序基于FastAdmin+ThinkPHP+UniApp

介绍 一款基于FastAdminThinkPHPUniApp开发的废品回收系统&#xff0c;适用废品回收站、再生资源回收公司上门回收使用的小程序 功能特性 1、会员注册 支持小程序授权注册和手机号注册 2、回收品类 可设置回收品类&#xff0c;废纸、废金属、废玻璃、旧衣服等 3、今日指导价…

简单实现---基于STL的演讲比赛流程管理系统(C++实现)

前言 事先声明&#xff1a;本文章中编写的代码仅用于学习算法思想和编写基础形式使用&#xff0c;并未进行太多的代码优化&#xff0c;因此&#xff0c;若需要对代码进行优化以及异常处理的小伙伴们&#xff0c;可自行添加相关操作&#xff0c;谢谢&#xff01; 一、题…

jenkins使用gitLab(极狐)认证登陆

jenkins安装 GitLab Authentication插件 我因为java版本和最新GitLab Authentication 1.19版本不兼容&#xff0c;选择了本地安装 找个历史版本1.13版本&#xff0c;然后下载到电脑上 - 本地上传插件并安装 在极狐上创建一个应用 - 配置应用信息 应用名&#xff1a;jenkinsLo…

[Linux][网络][高级IO][一][五种IO模型][同步通信][异步通信][非阻塞IO]详细讲解

目录 0.预备知识 && 思考问题1.五种IO模型0.形象理解五种模型1.阻塞IO2.非阻塞IO3.信号驱动IO4.多路转接/多路复用5.异步IO 2.高级IO重要概念1.同步通信 vs 异步通信2.阻塞 vs 非阻塞 3.非阻塞IO1.fcntl()2.实现SetNonBlock 0.预备知识 && 思考问题 网络通信本…

了解 GaussDB SQL 中 CASE 表达式

一、前言 SQL 是用于访问和处理数据库的标准计算机语言。GaussDB 支持 SQL 标准&#xff08;默认支持 SQL2、SQL3 和 SQL4 的主要特性&#xff09;。 本系列将以《云数据库 GaussDB—SQL 参考》在线文档为主线进行介绍。 二、CASE Expression&#xff08;CASE 表达式&#x…

sCrypt受邀在中国人民大学举办《区块链与数字经济》课程讲座

4月17日&#xff0c;可一科技特邀美国sCrypt公司的开发工程师周全&#xff0c;在中国人民大学的《区块链与数字经济》课程上进行了讲座。周全讲解了区块链的分布式设计、不可篡改特性&#xff0c;以及智能合约的基本原理&#xff0c;利用“智能家居触发机制”等生动比喻&#x…

laravel 使用 MongoDB

MongoDB MongoDB是一个基于分布式文件存储的数据库。由C语言编写。MongoDB 提供了面向文档的存储方式&#xff0c;操作起来比较简单和容易&#xff0c;支持“无模式”的数据建模&#xff0c;可以存储比较复杂的数据类型&#xff0c;是一款非常流行的文档类型数据库 使用场景 …

IDEA中git的常用操作(保姆级教学)

IDEA中git的常用操作&#xff08;保姆级教学&#xff09; 以下是git的工作原理&#xff0c;觉得繁琐的可以跳过不看 Workspace&#xff1a;工作区 (平时存放代码的地方) Index / Stage&#xff1a;暂存区&#xff08;用于临时存放存放你的改动&#xff0c;事实上就是一个文件&…

OSPF虚链路

原理概述 通常情况下&#xff0c;一个OSPF网络的每个非骨干区域都必须与骨干区域通过ABR路由器直接连接&#xff0c;非骨干区域之间的通信都需要通过骨干区域进行中转。但在现实中&#xff0c;可能会因为各种条件限制&#xff0c;导致非骨干区域和骨干区域无法直接连接&#x…

Unity自定义动画-Animation动画数据-How is “fileIDToRecycleName“ generated

一般美术和程序分工明确的项目 fbx确实是和动画一一对应的&#xff1b; 但一些独立&#xff0c;或者小工作室的项目&#xff0c;就没法保证了&#xff0c;关键还是在于 Unity的 .meta 目录 查找和对比了一下 .fbx 和 .meta&#xff1a; 缓存和不缓存Animation 具体的Animat…

记录MySQL数据库查询不等于xxx时的坑

目录 一、背景 二、需求 三、方法 四、示例 一、背景 在使用MySQL数据库查询数据时&#xff0c;需要查询字段name不等于xxx的记录&#xff0c;通过where name ! xxx查询出来的记录不符合预期&#xff0c;通过检查发现少了name字段为null的记录&#xff0c;后经查询得知在My…

安全加固

目录 1.文件锁定管理 2.设置用户账户有效期 3.查看并清除命令历史记录 4.设置用户超时登出时间 5.用户切换 6.用户提权 7.禁用重启热键CtrlAltDel 8.设置单用户模式密码 9.调整BIOS引导设置 10.禁止root用户从本地登录&#xff1a; 11.禁止root用户通过ss…

IDM下载器激活

文章目录 1、Internet Download Manager简介2、Internet Download Managery应用3、Internet Download Managery下载 1、Internet Download Manager简介 Internet Download Manager (IDM) 是一款功能强大的下载管理软件&#xff0c;旨在帮助用户更高效地管理和加速其下载任务。它…

Hive JSON数据处理

Hive JSON数据处理 JSON&#xff08;JavaScript Object Notation&#xff09;文件格式是一种轻量级的数据交换格式&#xff0c;用于存储和传输结构化的数据。它基于JavaScript的语法&#xff0c;但是可以被多种编程语言所支持和解析&#xff0c;因此被广泛应用于各种场景。 J…

AWS云优化:实现性能和成本的最佳平衡

随着企业数字化转型的加速&#xff0c;对云计算平台的需求也不断增长。AWS作为云计算行业的领导者之一&#xff0c;提供了广泛的云服务和解决方案&#xff0c;帮助企业实现业务的创新和发展。在AWS云上部署应用程序和服务后&#xff0c;对其进行优化是至关重要的&#xff0c;以…

易图讯科技数字武装三维电子沙盘

深圳易图讯科技(www.3dgis.top)集成了高清卫星影像、地形数据、实景三维模型、基干民兵、普通民兵、重要目标、兵要地志、企业潜力 、行业潜力 、社会组织潜力 、特种装备器材潜力、敌情数据、现场环境数据、物联感知信息&#xff0c;构建一体化的数字孪生空间&#xff0c;实现…

【挑战30天首通《谷粒商城》】-【第一天】【10 番外篇】 解决docker 仓库无法访问 + MobaXterm连接VirtualBox虚拟机

文章目录 课程介绍 1、解决docker 仓库无法访问 2、 MobaXterm连接VirtualBox虚拟机 Stage 1&#xff1a;下载MobaXterm选择适合你的版本 Stage 2&#xff1a;vagrant ssh 连接&#xff0c;开启ssh访问 Stage 2-1&#xff1a;su获取root账号权限,输入密码&#xff08;默认vagra…

(done) 什么是马尔可夫链?Markov Chain

参考视频&#xff1a;https://www.bilibili.com/video/BV1ko4y1P7Zv/?spm_id_from333.337.search-card.all.click&vd_source7a1a0bc74158c6993c7355c5490fc600 如下图所示&#xff0c;马尔可夫链条实际上就是 “状态机”&#xff0c;只不过状态机里不同状态之间的边上是 “…

2.数据类型与变量(java篇)

目录 数据类型与变量 数据类型 变量 整型变量 长整型变量 短整型变量 字节型变量 浮点型变量 双精度浮点型 单精度浮点型 字符型变量 布尔型变量&#xff08;boolean&#xff09; 类型转换 自动类型转换(隐式) 强制类型转换(显式) 类型提升 字符串类型 数据类…

Windows:管理用户账户,密码策略和安全配置

在Windows操作系统中&#xff0c;管理用户账户和密码策略是确保系统安全的关键步骤。本文将探讨如何通过PowerShell和其他Windows工具管理用户账户&#xff0c;包括查看和设置密码策略、检查用户状态&#xff0c;以及导出和导入安全策略。这些管理任务对于系统管理员尤其重要&a…