C++哈希(个人笔记)

C++哈希

    • 1.unordered_mapd
      • 1.1unordered_map的构造函数
      • 1.2unorder_map的容量
      • 1.3unordered_map的迭代器
      • 1.4unordered_map的元素访问
      • 1.5unorder_map的查找
      • 1.6unordered_map的修改操作
      • 1.7unordered_map的桶操作
    • 2.unordered_set
    • 3.unordered_set和unordered_set的笔试题
    • 4.哈希
      • 4.1哈希概念
      • 4.2哈希冲突
      • 4.3哈希函数
      • 4.4哈希冲突解决
        • 4.4.1闭散列
          • 4.4.1.1线性探测的实现
        • 4.4.2开散列
          • 4.4.2.1开散列的实现
    • 4.unordered_map和unordered_set模拟实现
      • 4.1哈希表的改造
      • 4.2unordered_set模拟实现
      • 4.3unordered_map模拟实现
    • 5.位图
      • 5.1位图的实现
      • 5.2布隆过滤器
        • 5.2.1布隆过滤器的实现


1.unordered_mapd

C++unorder_map官方文档

1.1unordered_map的构造函数

函数声明功能介绍
unordered_map构造不同格式的unordered_map对象

1.2unorder_map的容量

函数声明功能介绍
bool empty() const检测unordered_map是否为空
size_t size() const获取unordered_map的有效元素个数

1.3unordered_map的迭代器

函数声明功能介绍
begin返回unordered_map第一个元素的迭代器
end返回unordered_map最后一个元素下一个位置的迭代器
cbegin返回unordered_map第一个元素的const迭代器
cend返回unordered_map最后一个元素下一个位置的const迭代器

1.4unordered_map的元素访问

函数声明功能介绍
operator[]返回与key对应的value,没有则返回一个默认值

注意:
该函数中实际调用哈希桶的插入操作,用参数key与V()构造一个默认值往底层哈希桶中插入,如果key不在哈希桶中,插入成功,返回V(),插入失败,说明key已经在哈希桶中,将key对应的value返回。

1.5unorder_map的查找

函数声明功能介绍
iterator find(const K& key)返回key在哈希桶中的位置
size_t count(const K& key)返回哈希桶中关键码为key的键值对的个数

注意:unordered_map中key是不能重复的,因此count函数的返回值最大为1

1.6unordered_map的修改操作

函数声明功能介绍
insert向容器中插入键值对
erase删除容器中的键值对
void clear()清空容器中有效元素个数
void swap(unorder map&)交换两个容器中的元素

1.7unordered_map的桶操作

函数声明功能介绍
size_t bucket count()const返回哈希桶中桶的总个数
size_t bucket size(size_t n)const返回n号桶中有效元素的总个数
size_t bucket(const K& key)返回元素key所在的桶号

2.unordered_set

C++unordered_set官方文档
这里不在一 一列举

3.unordered_set和unordered_set的笔试题

在长度 2N 的数组中找出重复 N 次的元素
在这里插入图片描述

class Solution {
public:int repeatedNTimes(vector<int>& nums){unordered_map<int, int> found;for (int num : nums){found[num]++;}for (auto it = found.begin(); it != found.end(); ++it){if (it->second == nums.size() / 2){return it->first;}}return -1;}
};

两个数组的交集
在这里插入图片描述

class Solution {
public:vector<int> intersection(vector<int>& nums1, vector<int>& nums2){set<int> s1(nums1.begin(),nums1.end());set<int> s2(nums2.begin(),nums2.end());auto it1=s1.begin();auto it2=s2.begin();vector<int> v;while(it1!=s1.end()&&it2!=s2.end()){if(*it1<*it2){++it1;}else if(*it1>*it2){++it2;}else{v.push_back(*it1);++it1;++it2;}}return v;}
};

两个数组的交集 II
在这里插入图片描述

class Solution {
public:vector<int> intersect(vector<int>& nums1, vector<int>& nums2){multiset<int> s1(nums1.begin(),nums1.end());multiset<int> s2(nums2.begin(),nums2.end());auto it1=s1.begin();auto it2=s2.begin();vector<int> v;while(it1!=s1.end()&&it2!=s2.end()){if(*it1<*it2){it1++;}else if(*it1>*it2){it2++;}else{v.push_back(*it1);it1++;it2++;}}return v;}
};

存在重复元素
在这里插入图片描述

class Solution {
public:bool containsDuplicate(vector<int>& nums){unordered_map<int,int> mp;for(int num:nums){mp[num]++;}auto it=mp.begin();while(it!=mp.end()){if(it->second>=2){return true;}++it;}return false;}
};

两句话中的不常见单词
在这里插入图片描述

class Solution {
public:vector<string> uncommonFromSentences(string s1, string s2){vector<string> v;unordered_map<string,int> mp;stringstream ss1(s1);string word;while(ss1>>word){mp[word]++;}stringstream ss2(s2);while(ss2>>word){mp[word]++;}for(auto& w:mp){if(w.second==1){v.push_back(w.first);}}return v;}
};

4.哈希

4.1哈希概念

通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一 一映射的关系,在查找时通过该函数可以很快找到该元素。

1.插入元素
根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放

2.搜索元素
对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则找到了

哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)

4.2哈希冲突

不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。

4.3哈希函数

哈希函数设计原则:

  1. 1.哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间

  2. 哈希函数计算出来的地址能均匀分布在整个空间中

  3. 哈希函数应该比较简单
    常见的哈希函数

  4. 直接定址法–(常用)
    取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B
    优点:简单、均匀
    缺点:需要事先知道关键字的分布情况
    使用场景:适合查找比较小且连续的情况

  5. 除留余数法–(常用)
    设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,
    按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址

4.4哈希冲突解决

解决哈希冲突两种常见的方法是:闭散列和开散列

4.4.1闭散列

也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。

线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

1.插入

  1. 通过哈希函数获取待插入元素在哈希表中的位置
  2. 如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突, 使用线性探测找到下一个空位置,插入新元素
    在这里插入图片描述
    2.删除
    采用闭散列处理哈希冲突时,不能物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。(也就是给位置标记状态)
// 哈希表每个空间给个标记
// EMPTY此位置空, EXIST此位置已经有元素, DELETE元素已经删除
enum State{EMPTY, EXIST, DELETE};
4.4.1.1线性探测的实现
enum Status
{EMPTY,EXIST,DELETE
};template<class K,class V>
struct HashData
{pair<K, V> _kv;Status _s;          //状态
};//HashFunc<int>
template<class K>
struct HashFunc
{size_t operator()(const K& Key){return (size_t)Key;}
};//HashFunc<string>
template<>
struct HashFunc<string>
{size_t operator()(const string& key){size_t hash = 0;for (auto e : key){hash *= 31;hash += e;}cout << key << ":" << hash << endl;return hash;}
};template<class K,class V,class Hash=HashFunc<K>>
class HashTable
{
public:HashTable(){_tables.resize(10);}bool Insert(const pair<K, V>& kv){if (Find(kv.first)){return false;}//负载因子0.7就扩容if (_n * 10 / _tables.size() == 7){size_t newSize = _tables.size() * 2;HashTable<K, V> newHT;newHT._tables.resize(newSize);for (size_t i = 0;i < _tables.size();i++){if (_tables[i]._s == EXIST){newHT.Insert(_tables[i]._kv);}}_tables.swap(newHT._tables);}Hash hf;size_t hashi = hf(kv.first) % _tables.size();while (_tables[hashi]._s == EXIST){hashi++;hashi %= _tables.size();}_tables[hashi]._kv = kv;_tables[hashi]._s = EXIST;++_n;return true;}HashData<K, V>* Find(const K& key){Hash hf;size_t hashi = hf(key) % _tables.size();while (_tables[hashi]._s != EMPTY){if (_tables[hashi]._s == EXIST && _tables[hashi]._kv.first == key){return &_tables[hashi];}hashi++;hashi %= _tables.size();}return nullptr;}bool Erase(const K& key){HashData<K, V>* ret = Find(key);if (ret){ret->_s = DELETE;--_n;return true;}else{return false;}}void Print(){for (size_t i = 0;i < _tables.size();i++){if (_tables[i]._s == EXIST){cout << "[" << i << "]->" << _tables[i]._kv.first << ":" << _tables[i]._kv.second << endl;}else if (_tables[i]._s == EMPTY){printf("[%d]->\n", i);}else{printf("[%d]->D\n", i);}}cout << endl;}private:vector<HashData<K,V>> _tables;size_t _n = 0;//存储的关键字的个数
};

线性探测优点:实现非常简单

线性探测缺点:一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同
关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降
低。

4.4.2开散列

开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地
址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链
接起来,各链表的头结点存储在哈希表中。
在这里插入图片描述

4.4.2.1开散列的实现
//HashFunc<int>
template<class K>
struct HashFunc
{size_t operator()(const K& Key){return (size_t)Key;}
};//HashFunc<string>
template<>
struct HashFunc<string>
{size_t operator()(const string& key){size_t hash = 0;for (auto e : key){hash *= 31;hash += e;}cout << key << ":" << hash << endl;return hash;}
};template<class K, class V>
struct HashNode
{HashNode* _next;pair<K, V> _kv;HashNode(const pair<K, V>& kv):_kv(kv), _next(nullptr){}
};template<class K, class V,class Hash=HashFunc<K>>
class HashTable
{typedef HashNode<K, V> Node;
public:HashTable(){_tables.resize(10);}~HashTable(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}bool Insert(const pair<K, V>& kv){if (Find(kv.first))return false;Hash hf;// 负载因子最大到1if (_n == _tables.size()){vector<Node*> newTables;newTables.resize(_tables.size() * 2, nullptr);// 遍历旧表for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;//挪动到映射的新表size_t hashi = hf(cur->_kv.first) % newTables.size();cur->_next = newTables[hashi];//标记newTables[hashi] = cur;cur = next;}_tables[i] = nullptr;}_tables.swap(newTables);}size_t hashi = hf(kv.first) % _tables.size();Node* newnode = new Node(kv);// 头插newnode->_next = _tables[hashi];_tables[hashi] = newnode;++_n;return true;}Node* Find(const K& key){Hash hf;size_t hashi = hf(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){return cur;}cur = cur->_next;}return nullptr;}bool Erase(const K& key){Hash hf;size_t hashi = hf(key) % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){if (prev == nullptr){_tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}delete cur;return true;}prev = cur;cur = cur->_next;}return false;}void Some(){size_t bucketSize = 0;size_t maxBucketLen = 0;size_t sum = 0;double averageBucketLen = 0;for (size_t i = 0;i < _tables.size();i++){Node* cur = _tables[i];if (cur){++bucketSize;}size_t bucketLen = 0;while (cur){++bucketLen;cur = cur->_next;}sum += bucketLen;if (bucketLen > maxBucketLen){maxBucketLen = bucketLen;}}printf("all bucketSize:%d\n", _tables.size());printf("bucketSize:%d\n", bucketSize);printf("maxBucketLen:%d\n", maxBucketLen);printf("averageBucketLen:%lf\n\n", averageBucketLen);}private:vector<Node*> _tables;size_t _n = 0;
};

4.unordered_map和unordered_set模拟实现

4.1哈希表的改造

//HashFunc<int>
template<class K>
struct HashFunc
{size_t operator()(const K& Key){return (size_t)Key;}
};//HashFunc<string>
template<>
struct HashFunc<string>
{size_t operator()(const string& key){size_t hash = 0;for (auto e : key){hash *= 31;hash += e;}cout << key << ":" << hash << endl;return hash;}
};
namespace hash_bucket
{template<class T>struct HashNode{HashNode* _next;T _data;HashNode(const T& data):_data(data), _next(nullptr){}};// 前置声明template<class K, class T, class KeyOfT, class Hash>class HashTable;template<class K,class T,class Ref,class Ptr,class KeyOfT,class Hash>struct __HTIterator{typedef HashNode<T> Node;typedef __HTIterator<K, T, Ref, Ptr, KeyOfT, Hash> Self;Node* _node;const HashTable<K, T, KeyOfT, Hash>* _pht;size_t _hashi;__HTIterator(Node* node,HashTable<K,T,KeyOfT,Hash>* pht,size_t hashi):_node(node),_pht(pht),_hashi(hashi){}__HTIterator(Node* node, const HashTable<K, T, KeyOfT, Hash>* pht, size_t hashi):_node(node), _pht(pht), _hashi(hashi){}Self& operator++(){if (_node->_next){_node = _node->_next;}else{++_hashi;while (_hashi < _pht->_tables.size()){if (_pht->_tables[_hashi]){_node = _pht->_tables[_hashi];break;}++_hashi;}if (_hashi == _pht->_tables.size()){_node = nullptr;}}return *this;}Ref operator*(){return _node->_data;}Ptr operator->(){return &(_node->_data);}bool operator!=(const Self& s){return _node != s._node;}};//unordered_set->HashTable<K,K>//unordered_map->HashTable<K,pair<K,V>>template<class K, class T,class KeyOfT,class Hash>class HashTable{typedef HashNode<T> Node;template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>friend struct __HTIterator;public:typedef __HTIterator<K, T, T&, T*, KeyOfT, Hash> iterator;typedef __HTIterator<K, T, const T&, const T*, KeyOfT, Hash> const_iterator;iterator begin(){for (size_t i = 0;i < _tables.size();i++){if (_tables[i]){return iterator(_tables[i], this, i);}}return end();}iterator end(){return iterator(nullptr, this, -1);}const_iterator begin() const{for (size_t i = 0;i < _tables.size();i++){if (_tables[i]){return const_iterator(_tables[i], this, i);}}return end();}const_iterator end() const{return const_iterator(nullptr, this, -1);}HashTable(){_tables.resize(10);}~HashTable(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}pair<iterator,bool> Insert(const T& data){Hash hf;KeyOfT kot;iterator it = Find(kot(data));if (it != end()){return make_pair(it, false);}// 负载因子最大到1if (_n == _tables.size()){vector<Node*> newTables;newTables.resize(_tables.size() * 2, nullptr);// 遍历旧表for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;//挪动到映射的新表size_t hashi = hf(kot(data)) % newTables.size();cur->_next = newTables[hashi];//标记newTables[hashi] = cur;cur = next;}_tables[i] = nullptr;}_tables.swap(newTables);}size_t hashi = hf(kot(data)) % _tables.size();Node* newnode = new Node(data);// 头插newnode->_next = _tables[hashi];_tables[hashi] = newnode;++_n;return make_pair(iterator(newnode,this,hashi),true);}iterator Find(const K& key){Hash hf;KeyOfT kot;size_t hashi = hf(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (kot(cur->_data) == key){return iterator(cur,this,hashi);}cur = cur->_next;}return end();}bool Erase(const K& key){Hash hf;KeyOfT kot;size_t hashi = hf(key) % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (kot(cur->_data) == key){if (prev == nullptr){_tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}delete cur;return true;}prev = cur;cur = cur->_next;}return false;}void Some(){size_t bucketSize = 0;size_t maxBucketLen = 0;size_t sum = 0;double averageBucketLen = 0;for (size_t i = 0;i < _tables.size();i++){Node* cur = _tables[i];if (cur){++bucketSize;}size_t bucketLen = 0;while (cur){++bucketLen;cur = cur->_next;}sum += bucketLen;if (bucketLen > maxBucketLen){maxBucketLen = bucketLen;}}averageBucketLen = (double)sum / (double)bucketSize;printf("all bucketSize:%d\n", _tables.size());printf("bucketSize:%d\n", bucketSize);printf("maxBucketLen:%d\n", maxBucketLen);printf("averageBucketLen:%lf\n\n", averageBucketLen);}private:vector<Node*> _tables;size_t _n = 0;};
}

4.2unordered_set模拟实现

#pragma once
#include"HashTable.h"namespace ljh
{template<class K, class Hash = HashFunc<K>>class unordered_set{struct SetKeyOfT{const K& operator()(const K& key){return key;}};public:typedef typename hash_bucket::HashTable<K, K, SetKeyOfT, Hash>::const_iterator iterator;typedef typename hash_bucket::HashTable<K, K, SetKeyOfT, Hash>::const_iterator const_iterator;/*iterator begin(){return _ht.begin();}iterator end(){return _ht.end();}*/const_iterator begin() const{return _ht.begin();}const_iterator end() const{return _ht.end();}pair<const_iterator, bool> insert(const K& key){auto ret = _ht.Insert(key);return pair<const_iterator, bool>(const_iterator(ret.first._node, ret.first._pht, ret.first._hashi), ret.second);}iterator find(const K& key){return _ht.Find(key);}bool erase(const K& key){return _ht.Erase(key);}private:hash_bucket::HashTable<K, K, SetKeyOfT, Hash> _ht;};
}

4.3unordered_map模拟实现

#pragma once
#include"HashTable.h"
namespace ljh
{template<class K,class V,class Hash=HashFunc<K>>class unordered_map{struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};public:typedef typename hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash>::iterator iterator;iterator begin(){return _ht.begin();}iterator end(){return _ht.end();}pair<iterator, bool> insert(const pair<K, V>& kv){return _ht.Insert(kv);}V& operator[](const K& key){pair<iterator, bool> ret = _ht.Insert(make_pair(key, V()));return ret.first->second;}const V& operator[](const K& key) const{pair<iterator, bool> ret = _ht.Insert(make_pair(key, V()));return ret.first->second;}iterator find(const K& key){return _ht.Find(key);}bool erase(const K& key){return _ht.Erase(key);}private:hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash> _ht;};
}

5.位图

给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40亿个数中。
解决方案:
1:暴力遍历:时间复杂度O(N)
2.快排(O(NlogN))+二分查找(logN)
3.位图
数据是否在给定的整形数据中,结果是在或者不在,刚好是两种状态,可以使用一个二进制比特位来代表数据是否存在,如果二进制比特位为1,代表存在,为0代表不存在。

5.1位图的实现

//N为需要多少比特位
template<size_t N>
class bitset
{
public:bitset(){_bits.resize(N / 32 + 1);}void set(size_t x){size_t i = x / 32;size_t j = x % 32;_bits[i] |= (1 << j);}void reset(size_t x){size_t i = x / 32;size_t j = x % 32;_bits[i] &= ~(1 << j);}bool test(size_t x){size_t i = x / 32;size_t j = x % 32;return _bits[i] & (1 << j);}private:vector<int> _bits;
};template<size_t N>
class twobitset
{
public:void set(size_t x){//00->01//01->10//10->11//11->不变if (_bs1.test(x) == false && _bs2.test(x) == false){_bs2.set(x);}else if (_bs1.test(x) == false && _bs2.test(x) == true){_bs1.set(x);_bs2.reset(x);}else if (_bs1.test(x) == true && _bs2.test(x) == false){_bs2.set(x);}}void Print(){for (size_t i = 0;i < N;i++){if (_bs1.test(i) == false && _bs2.test(i) == true){cout << "1->" << i << endl;}else if (_bs1.test(i) == true && _bs2.test(i) == false){cout << "2->" << i << endl;}}cout << endl;}private:bitset<N> _bs1;bitset<N> _bs2;
};

5.2布隆过滤器

具体实现思想:用多个哈希函数,将一个数据映射到位图结构中
作用:某样东西一定不存在或者可能存在
在这里插入图片描述
在这里插入图片描述

5.2.1布隆过滤器的实现
#include<string>
#include<iostream>
#include<vector>
using namespace std;
#include"bitset.h"
struct BKDRHash
{size_t operator()(const string& key){// BKDRsize_t hash = 0;for (auto e : key){hash *= 31;hash += e;}return hash;}
};struct APHash
{size_t operator()(const string& key){size_t hash = 0;for (size_t i = 0; i < key.size(); i++){char ch = key[i];if ((i & 1) == 0){hash ^= ((hash << 7) ^ ch ^ (hash >> 3));}else{hash ^= (~((hash << 11) ^ ch ^ (hash >> 5)));}}return hash;}
};struct DJBHash
{size_t operator()(const string& key){size_t hash = 5381;for (auto ch : key){hash += (hash << 5) + ch;}return hash;}
};template<size_t N,class K = string,class HashFunc1 = BKDRHash,class HashFunc2 = APHash,class HashFunc3 = DJBHash>
class BloomFilter
{
public:void Set(const K& key){size_t hash1 = HashFunc1()(key) % N;size_t hash2 = HashFunc2()(key) % N;size_t hash3 = HashFunc3()(key) % N;_bs.set(hash1);_bs.set(hash2);_bs.set(hash3);}//void Reset(const K& key);一般不支持删除bool Test(const K& key){//判断不存在是准确的,其他的都是存在偏差的size_t hash1 = HashFunc1()(key) % N;if (_bs.test(hash1) == false){return false;}size_t hash2 = HashFunc2()(key) % N;if (_bs.test(hash2) == false){return false;}size_t hash3 = HashFunc3()(key) % N;if (_bs.test(hash3) == false){return false;}// 存在误判的return true;}private:ljh::bitset<N> _bs;
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/327147.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java全局异常处理,@ControllerAdvice异常拦截原理解析【简单易懂】

https://www.bilibili.com/video/BV1sS411c7Mo 文章目录 一、全局异常处理器的类型1-1、实现方式一1-2、实现方式二 二、全局异常拦截点2-1、入口2-2、全局异常拦截器是如何注入到 DispatcherServlet 的 三、ControllerAdvice 如何解析、执行3-1、解析3-2、执行 四、其它4-1、设…

CorelDRAW2024新特性全解析!

CorelDRAW2024是一款备受赞誉的图形设计软件&#xff0c;它以其强大的功能和用户友好性赢得了全球数百万设计师的青睐。该软件提供了丰富的绘图、排版、图像处理、矢量编辑以及网页设计工具&#xff0c;无论是初学者还是专业设计师&#xff0c;都能在这款软件中找到满足自己需求…

精品录播|电磁场数值仿真技术及天线设计与应用

电磁场数值仿真技术及天线设计与应用

【技术分享】 OPC UA安全策略证书简述

那什么是OPC UA证书&#xff1f;用途是什么&#xff1f; 简单来说它是身份验证和权限识别。 OPC UA使用X.509证书标准&#xff0c;该标准定义了标准的公钥格式。建立UA会话的时候&#xff0c;客户端和服务器应用程序会协商一个安全通信通道。数字证书&#xff08;X.509&#x…

Android Compose四: 常用的组件 Text

Text Composable fun Text(text: String, //用于设置显示文本modifier: Modifier Modifier, //设置形状大小点击事件等color: Color Color.Unspecified, //fontSize: TextUnit TextUnit.Unspecified,fontStyle: FontStyle? null,fontWeight: FontW…

RockChip Android8.1 EthernetService分析

一:概述 本篇文章将围绕RK Android8.1 SDK对Ethernet做一次框架分析,包含Framework层和APP层。 当前版本SDK默认只支持一路Ethernet,熟悉Ethernet工作流程后通过修改最终会在系统Setting以太网中呈现多路选项(可以有多种实现方式),博主通过增加ListPreference实现的效果…

Linux 操作系统网络编程1

目录 1、网络编程 1.1 OSI 网络七层模型 1.1.1 OSI 参考模型 1.1.2 网络数据传输过程 2 传输层通信协议 2.1 TCP 2.1.1 TCP的3次握手过程 2.1.2 TCP四次挥手过程 2.2 UDP 3 网络编程的IP地址 4 端口 5 套接字 1、网络编程 1.1 OSI 网络七层模型 1.1.1 OSI 参考模型…

5月13号作业

使用消息队列实现的2个终端之间的互相聊天 并使用信号控制消息队列的读取方式&#xff1a; 当键盘按ctrlc的时候&#xff0c;切换消息读取方式&#xff0c;一般情况为读取指定编号的消息&#xff0c;按ctrlc之后&#xff0c;指定的编号不读取&#xff0c;读取其他所有编号的消息…

【江南大学×朗汀留学】部分留学录取案例合集

朗汀留学 X 江南大学 尽管客观条件如此艰难&#xff0c;朗汀留学的同学们还是斩获众多名校的录取。成绩属于过去&#xff0c;我们继续努力创造更好未来。 以下为我们摘取的江南大学部分学生案例供大家参考&#xff0c;再次恭喜所有获得理想大学offer的学生们&#xff0c;你们…

C# OpenCvSharp Demo - Mat格式化输出、Mat序列化和反序列化

C# OpenCvSharp Demo - Mat格式化输出、Mat序列化和反序列化 目录 效果 项目 代码 下载 效果 直接输出&#xff1a;Mat [ 3*2*CV_8UC3, IsContinuousTrue, IsSubmatrixFalse, Ptr0x1eb73ef9140, Data0x1eb73ef91c0 ]格式化输出&#xff1a;默认风格[ 91, 2, 79, 179, …

【计算机网络】http协议的原理与应用,以及https是如何保证安全传输的

HTTP 超文本传输协议&#xff08;英文&#xff1a;HyperText Transfer Protocol&#xff0c;缩写&#xff1a;HTTP&#xff09;是一种用于分布式、协作式和超媒体信息系统的应用层协议。HTTP是万维网的数据通信的基础。 HTTP的发展是由蒂姆伯纳斯-李于1989年在欧洲核子研究组织…

Web3Tools - 助记词生成

Web3Tools - 助记词生成工具 本文介绍了一个简单的助记词生成工具&#xff0c;使用 React 和 Material-UI 构建。用户可以选择助记词的语言和长度&#xff0c;然后生成随机的助记词并显示在页面上 功能介绍 选择语言和长度&#xff1a; 用户可以在下拉菜单中选择助记词的语言&…

Linux x86_64 dump_stack()函数基于FP栈回溯

文章目录 前言一、dump_stack函数使用二、dump_stack函数源码解析2.1 show_stack2.2 show_stack_log_lvl2.3 show_trace_log_lvl2.4 dump_trace2.5 print_context_stack 参考资料 前言 Linux x86_64 centos7 Linux&#xff1a;3.10.0 一、dump_stack函数使用 dump_stack函数…

大模型prompt实例:知识库信息质量校验模块

大模型相关目录 大模型&#xff0c;包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容 从0起步&#xff0c;扬帆起航。 大模型应用向开发路径&#xff1a;AI代理工作流大模型应用开发实用开源项目汇总大模…

DRF 纯净版创建使用

【一】介绍 &#xff08;1&#xff09;使用原因 在Django中&#xff0c;contrib 包包含了许多内置的app和中间件&#xff0c;如auth、sessions、admin等&#xff0c;这些app在创建新的Django项目时默认是包含在内的。然而&#xff0c;在开发RESTful API时&#xff0c;可能不需…

linux性能监控之lsof

lsof&#xff1a;list open files&#xff0c;显示所有打开的文件以及进程信息&#xff0c;我们通常用来检查特定的文件被哪些进程打开 [rootk8s-master ~]# lsof --help lsof: illegal option character: - lsof: -e not followed by a file system path: "lp" lso…

网络传输,请每次都开启 TCP_NODELAY

原文&#xff1a;Marc Brooker - 2024.05.09 &#xff08;注&#xff1a;不必过于担心这个问题&#xff0c;大部分现代库&#xff0c;语言&#xff08;如 Go&#xff09;&#xff0c;代理&#xff08;如 Envoy&#xff09;&#xff0c;都默认设置了 TCP_NODELAY。如果遇到网络…

光耦 IS314W中文资料 IS314W引脚图及功能说明

IS314W是一款IGBT/MOSFET输出型光耦&#xff0c;由Isocom公司制造。它主要用于驱动用于电机控制和电源系统变频器的功率IGBT和MOSFET。以下是该产品的部分功能和参数&#xff1a; - 两个独立的光耦输出通道 - 轨对轨输出电压 - 最大峰值输出电流&#xff1a;1.0A - 最小峰值输…

DDoS攻击揭秘与网站防护策略

DDoS攻击&#xff08;分布式拒绝服务攻击&#xff09;是一种利用大量被控制的计算机或智能设备&#xff08;如僵尸网络&#xff09;对目标网站或服务器发起大量无效请求或数据流量&#xff0c;从而导致目标系统资源耗尽、服务崩溃或无法处理正常请求的攻击方式。这种攻击通常是…

【cpp】并发多线程 Unique

1. unique_lock 何时锁定资源。 unique_lock lock1 时候&#xff0c;还没有锁住资源。 实际是后面&#xff0c;显式的出发&#xff1a; 比如&#xff0c; lock.lock, 或 std::lock(lk1,lk2), 或者条件变量CV.wait(mtx, []{!re})。 #include <iostream> #include <mu…