Linux 操作系统网络编程1

目录

1、网络编程

1.1 OSI 网络七层模型

1.1.1 OSI 参考模型

1.1.2 网络数据传输过程

2 传输层通信协议

2.1 TCP

2.1.1 TCP的3次握手过程

2.1.2 TCP四次挥手过程

2.2 UDP

3 网络编程的IP地址

4 端口

5 套接字


1、网络编程

1.1 OSI 网络七层模型

1.1.1 OSI 参考模型

网络模型作用:进行数据封装

        OSI 开放式系统互联。OSI模型把网络通信的工作分为7层,从下到上分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。

        OSI只是存在于概念和理论上的一种模型,它的缺点是分层太多,增加了网络工作的复杂性,所以没有大规模应用。后来人们对OSI进行了简化,合并了一些层,最终只保存了4层,从下到上分别是接口层、网络层,传输层和应用层,也就是后来的TCP/IP模型。

OSI 各层模型功能:

1-> 物理层

        利用传输介质为数据链路层提供物理连接,实现比特流的透明传输。

        数据单位:比特

        典型设备:光纤、电缆

2-> 数据链路层

        在物理层提供的比特流的基础上,通过差错控制、流量控制方法,使有差错的物理线路变为无差错的数据链路,即提供可靠的通过物理介质传输数据的方法。

        数据单位:帧。

3-> 网络层

        通过 IP 寻址来建立两个节点之间的连接

4-> 传输层

        向用户提供可靠的端到端的差错和流量控制,保证报文的正确传输,同时向高层屏蔽下层数据通信的细节,即向用户透明地传送报文。

5-> 会话层

        组织和协调两个回话进程之间的通信,并对数据交换进行管理。

6-> 表示层

        表示层要完成的功能主要有不同数据编码格式的转换,提供数据压缩、解压缩服务,对数据进行加密、解密。

7-> 应用层

        直接向用户提供服务,完成用户希望在网络上完成的各种工作。

1.1.2 网络数据传输过程

        我们平常使用的程序( 或者说软件) 一般都是通过应用层来访问网络的, 程序产生的数据会一层一层地往下传输, 直到最后的网络接口层, 就通过网线发送到互联网上去了。数据每往下走一层, 就会被这一层的协议增加一层包装, 等到发送到互联网上时, 已经比原始数据多了四层包装。 整个数据封装的过程就像俄罗斯套娃。当另一台计算机接收到数据包时, 会从网络接口层再一层一层往上传输, 每传输一层就拆开一层包装, 直到最后的应用层, 就得到了最原始的数据, 这才是程序要使用的数据。

2 传输层通信协议

2.1 TCP

        TCP是面向连接的传输协议、可考性传输,建立连接时要经过三次握手, 断开连接时要经过四次挥手, 中间传输数据时也要回复 ACK 包确认, 多种机制保证了数据能够正确到达, 不会丢失或出错。

2.1.1 TCP的3次握手过程

1、 客户端发送 TCP 连接请求
        客户端会随机一个初始序列号 seq=x( client_isn) , 设置 SYN=1, 表示这是 SYN 握手报文。 然后 就可以把这个 SYN 报文发送给服务端了, 表示向服务端发起连接, 之后客户端处于同步已发送状态。


2、 服务端发送针对 TCP 连接请求的确认, 服务端收到客户端的 SYN 报文后, 也随机一个初始序列号(server_isn)(seq=y), 设置 ack=x+1, 表示收到了客户端的 x 之前的数据, 希望客户端下次发送的数据从x+1 开始。 设置 SYN=1 和 ACK=1。 表示这是一个 SYN 握手和 ACK 确认应答报文。最后把该报文发给客户端, 该报文也不包含应用层数据, 之后服务端处于同步已接收状态。


3、 客户端发送确认的确认
        客户端收到服务端报文后, 还要向服务端回应最后一个应答报文, 将 ACK 置为 1 , 表示这是一个应答报文 ack=y+1 , 表示收到了服务器的 y 之前的数据, 希望服务器下次发送的数据从 y+1 开始。 最后把报文发送给服务端, 这次报文可以携带数据, 之后客户端处于连接已建立 状态。 服务器收到客户端的应答报文后, 也进入连接已建立状态通过这样的三次握手过程, TCP 能够确保双方能够收到对方的请求和回应, 并且双方都知道彼此的初始序列号和确认号。 这样建立起来的连接可以提供可靠的数据传输和顺序控制。

        ACK: 确认序号有效。
        SYN: 发起一个新连接。

        CLOSED: 不在连接状态( 这是为方便描述假想的状态, 实际不存在)
        LISTEN: 等待从任何远端 TCP 和端口的连接请求。
        SYN_SENT: 发送完一个连接请求后等待一个匹配的连接请求。 syn_sent
        SYN_RCVD:这个状态表示接受到了 SYN 报文, 在正常情况下, 这个状态是服务器端的 SOCKET 在建立 TCP连接时的三次握手会话过程中的一个中间状态, 很短暂, 基本上用 netstat 你是很难看到这种状态的, 除非你特意写了一个客户端测试程序, 故意将三次 TCP 握手过程中最后一个 ACK 报文不予发送。 因此这种状态时, 当收到客户端的 ACK 报文后, 它会进入到 ESTABLISHED 状态ESTABLISHED: 表示一个打开的连接, 接收到的数据可以被投递给用户。 连接的数据传输阶段的正常状态。


为什么是三次握手, 为什么不是两次或者四次?
        主要原因: 防止已经失效的连接请求报文突然又传送到了服务器, 从而产生错误
如果采用两次握手会出现以下情况:
        客户端向服务器端发送的请求报文由于网络等原因滞留, 未能发送到服务器端, 此时连接请求报文失效,客户端会再次向服务器端发送请求报文, 之后与服务器端建立连接, 当连接释放后, 由于网络通畅了, 第一次客户端发送的请求报文又突然到达了服务器端, 这条请求报文本该失效了, 但此时服务器端误认为客户端又发送了一次连接请求, 两次握手建立好连接, 此时客户端忽略服务器端发来的确认, 也不发送数据, 造成不必要的错误和网络资源的浪费。如果采用三次握手的话, 就算那条失效的报文发送到服务器端, 服务器端确认并向客户端发送报文, 但此时
客户端不会发出确认, 由于客户端没有确认, 由于服务器端没有接收到确认, 就会知道客户端没有请求连接。为什么不是四次? 如果三次就能够确定正常连接, 就没有必要在进行确认, 来浪费资源了。

2.1.2 TCP四次挥手过程

        ESTABLISHED: 表示一个打开的连接, 接收到的数据可以被投递给用户。 连接的数据传输阶段的正常状态。

        FIN_WAIT_1: 等待远端 TCP 的连接终止请求, 或者等待之前发送的连接终止请求的确认。
        FIN_WAIT_2: 等待远端 TCP 的连接终止请求。
        CLOSE_WAIT: 等待本地用户的连接终止请求。
        CLOSING: 等待远端 TCP 的连接终止请求确认。
        LAST_ACK: 等待先前发送给远端 TCP 的连接终止请求的确认( 包括它字节的连接终止请求的确认)
        TIME_WAIT: 等待足够的时间过去以确保远端 TCP 接收到它的连接终止请求的确认。
数据传输完毕后, 双方都可释放连接。 最开始的时候, 客户端和服务器都是处于 ESTABLISHED 状态, 然后客户端主动关闭, 服务器被动关闭。
        FIN: 断开一个连接标志;
        第一次挥手:客户端发出连接释放报文, 并且停止发送数据。 释放数据报文首部, FIN=1, 其序列号为 seq=u( 等于前面已经传送过来的数据的最后一个字节的序号加 1) , 此时, 客户端进入 FIN-WAIT-1( 终止等待 1)状态。
        第二次挥手 服务器端接收到连接释放报文后, 发出确认报文, ACK=1, ack=u+1, 并且带上自己的序列号seq=v, 此时, 服务端就进入了 CLOSE-WAIT 关闭等待状态。
        第三次挥手 客户端接收到服务器端的确认请求后, 客户端就会进入 FIN-WAIT-2( 终止等待 2) 状态, 等待服务器发送连接释放报文, 服务器将最后的数据发送完毕后, 就向客户端发送连接释放报文, 服务器就进入了LAST-ACK( 最后确认) 状态, 等待客户端的确认。
        第四次挥手 客户端收到服务器的连接释放报文后, 必须发出确认, ACK=1, ack=w+1, 而自己的序列号是seq=u+1, 此时, 客户端就进入了 TIME-WAIT( 时间等待) 状态, 但此时 TCP 连接还未终止, 必须要经过 2MSL后( 最长报文寿命) , 当客户端撤销相应的 TCB 后, 客户端才会进入 CLOSED 关闭状态, 服务器端接收到确认报文后, 会立即进入 CLOSED 关闭状态, 到这里 TCP 连接就断开了, 四次挥手完成。

总结:
        * 面向连接, 类似我们手机打电话, 不管有没有人说话--通话都计时
        * 稳定的长连接通信
        * 速度相对来说比较慢
        * 一般不容易丢失数据 -- 有链接三次握手
        * 以及断开链接的四次挥手

2.2 UDP

        UDP 是非面向连接的传输协议, 没有建立连接和断开连接的过程, 它只是简单地把数据丢到网络中, 也不需要 ACK 包确认。 在数据传输过程中延迟小、 数据传输效率高。
当强调传输性能而不是传输的完整性时, 如: 音频和多媒体应用, UDP 是最好的选择。
总结:
        * 短链接, 不连接通信
        * 相对来说没有 TCP 那么稳定
        * 有可能丢失相应数据
        * 它的发送速度相对 TCP 来说比较快

3 网络编程的IP地址

        IP 地址是 Internet Protocol Address 的缩写, 译为“网际协议地址”。 在因特网上进行通信时, 必须要知道对方的 IP 地址。

1) shell 查看 ip
windows 下: ipconfig
Linux 下: ifconfig
2) ipv4
        ipv4 地址是一个 32 位(bit)地址数据(unsigned int)
        1> 点分十进制表示 IP
                8 位合成一个数值, 用.隔开, 这种表达方式即为点分十进制
                例如 点分十进制: 192.168.110.59
                0.0.0.0 -- 255.255.255.255
2> ip 由网络号和主机号组成
        网络号: 区分局域网
        主机号: 区分同一个局域网内不同的设备
        IP 地址根据网络 ID 的不同分为 5 种类型

A 类地址: 0.0.0.0-127.255.255.255
        第一个字节 IP 网络号, 后三个字节为主机字节
        A 类地址你是无法得到的, A 类地址是用于超级公司/国家政府的地址
B 类地址: 128.0.0.0-191.255.255.255
        前两个字节为 IP 网络号, 后两个字节为主机字节
        一般也适用于大型公司
C 类地址: 192.0.0.0-223.255.255.255
        前三个字节为 IP 网络号, 后一个字节为主机地址
D 类地址: 在历史上被叫做多播地址(multicast address), 即组播地址
        224.0.0.0 到 239.255.255.255。
E 类地址: 广播地址, 用于研究使用

3> 由于科技发展, 电子设备增多, IP 地址不够用, 出现 ipv6 地址(128 位地址数据) 2^128
4> 子网掩码: 网络号为 1 主机号为 0
        例如: 192.168.110.123
        子网掩码: 255.255.255.0 ( c 类)

5> 网关: 网络号不变, 主机号为 0
        例如: 192.168.110.123
        网关: 192.168.110.0 ( C 类 IP)

4 端口

        一台计算机可以同时提供多种网络服务, 例如 Web 服务( 网站) 、 FTP 服务( 文件传输服务) 、 SMTP 服务( 邮箱服务) 等, 仅 5 有 IP 地址, 计算机虽然可以正确接收到数据包, 但是却不知道要将数据包交给哪个网络程序来处理, 所以为了区分不同的网络程序, 计算机会为每个网络程序分配一个独一无二的端口号( PortNumber)

端口的数据类型: unsigned short 范围: 0-65535
端口分为
        1) 知名端口号
                知名端口号是系统程序使用的端口号. 知名端口范围从 0 到 1023.
        2) 动态端口号
                动态端口号是普通程序使用的端口号. 动态端口的范围是从 1024 到 65535. 当这个程序关闭时,
        同时也就释放了所占用的端口号, 一般建议使用 10000 以上。 10000-65535

5 TCP 协议编程框架

5 套接字


        套接字是计算机之间进行通信的一种约定或一种方式。 通过 socket 这种约定, 一台计算机可以接收其他计算机的数据, 也可以向其他计算机发送数据。
        socket 的典型应用就是浏览器: 浏览器获取用户输入的 URL( 统一资源定位符) , 向服务器发起请求,服务器分析接收到的 URL, 将对应的网页内容返回给浏览器, 浏览器再经过解析和渲染, 就将文字、 图片、视频等元素呈现给用户。
        UNIX/Linux 中的 socket 是什么? UNIX/Linux 程序在执行任何形式的 I/O 操作时, 都是在读取或者写入一个文件描述符。 一个文件描述符只是一个和打开的文件相关联的整数, 它的背后可能是一个硬盘上的普通文件、 FIFO、 管道、 终端、 键盘、 显示器, 甚至是一个网络连接。
请注意, 网络连接也是一个文件, 它也有文件描述符! 我们可以通过 socket() 函数来创建一个网络连接, 或者说打开一个网络文件, socket() 的返回值就是文件描述符。 有了文件描述符, 我们就可以使用普通的文件操作函数来传输数据了, 网络编程原来就是如此简单!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/327134.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

5月13号作业

使用消息队列实现的2个终端之间的互相聊天 并使用信号控制消息队列的读取方式: 当键盘按ctrlc的时候,切换消息读取方式,一般情况为读取指定编号的消息,按ctrlc之后,指定的编号不读取,读取其他所有编号的消息…

【江南大学×朗汀留学】部分留学录取案例合集

朗汀留学 X 江南大学 尽管客观条件如此艰难,朗汀留学的同学们还是斩获众多名校的录取。成绩属于过去,我们继续努力创造更好未来。 以下为我们摘取的江南大学部分学生案例供大家参考,再次恭喜所有获得理想大学offer的学生们,你们…

C# OpenCvSharp Demo - Mat格式化输出、Mat序列化和反序列化

C# OpenCvSharp Demo - Mat格式化输出、Mat序列化和反序列化 目录 效果 项目 代码 下载 效果 直接输出:Mat [ 3*2*CV_8UC3, IsContinuousTrue, IsSubmatrixFalse, Ptr0x1eb73ef9140, Data0x1eb73ef91c0 ]格式化输出:默认风格[ 91, 2, 79, 179, …

【计算机网络】http协议的原理与应用,以及https是如何保证安全传输的

HTTP 超文本传输协议(英文:HyperText Transfer Protocol,缩写:HTTP)是一种用于分布式、协作式和超媒体信息系统的应用层协议。HTTP是万维网的数据通信的基础。 HTTP的发展是由蒂姆伯纳斯-李于1989年在欧洲核子研究组织…

Web3Tools - 助记词生成

Web3Tools - 助记词生成工具 本文介绍了一个简单的助记词生成工具,使用 React 和 Material-UI 构建。用户可以选择助记词的语言和长度,然后生成随机的助记词并显示在页面上 功能介绍 选择语言和长度: 用户可以在下拉菜单中选择助记词的语言&…

Linux x86_64 dump_stack()函数基于FP栈回溯

文章目录 前言一、dump_stack函数使用二、dump_stack函数源码解析2.1 show_stack2.2 show_stack_log_lvl2.3 show_trace_log_lvl2.4 dump_trace2.5 print_context_stack 参考资料 前言 Linux x86_64 centos7 Linux:3.10.0 一、dump_stack函数使用 dump_stack函数…

大模型prompt实例:知识库信息质量校验模块

大模型相关目录 大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容 从0起步,扬帆起航。 大模型应用向开发路径:AI代理工作流大模型应用开发实用开源项目汇总大模…

DRF 纯净版创建使用

【一】介绍 (1)使用原因 在Django中,contrib 包包含了许多内置的app和中间件,如auth、sessions、admin等,这些app在创建新的Django项目时默认是包含在内的。然而,在开发RESTful API时,可能不需…

linux性能监控之lsof

lsof:list open files,显示所有打开的文件以及进程信息,我们通常用来检查特定的文件被哪些进程打开 [rootk8s-master ~]# lsof --help lsof: illegal option character: - lsof: -e not followed by a file system path: "lp" lso…

网络传输,请每次都开启 TCP_NODELAY

原文:Marc Brooker - 2024.05.09 (注:不必过于担心这个问题,大部分现代库,语言(如 Go),代理(如 Envoy),都默认设置了 TCP_NODELAY。如果遇到网络…

光耦 IS314W中文资料 IS314W引脚图及功能说明

IS314W是一款IGBT/MOSFET输出型光耦,由Isocom公司制造。它主要用于驱动用于电机控制和电源系统变频器的功率IGBT和MOSFET。以下是该产品的部分功能和参数: - 两个独立的光耦输出通道 - 轨对轨输出电压 - 最大峰值输出电流:1.0A - 最小峰值输…

DDoS攻击揭秘与网站防护策略

DDoS攻击(分布式拒绝服务攻击)是一种利用大量被控制的计算机或智能设备(如僵尸网络)对目标网站或服务器发起大量无效请求或数据流量,从而导致目标系统资源耗尽、服务崩溃或无法处理正常请求的攻击方式。这种攻击通常是…

【cpp】并发多线程 Unique

1. unique_lock 何时锁定资源。 unique_lock lock1 时候&#xff0c;还没有锁住资源。 实际是后面&#xff0c;显式的出发&#xff1a; 比如&#xff0c; lock.lock, 或 std::lock(lk1,lk2), 或者条件变量CV.wait(mtx, []{!re})。 #include <iostream> #include <mu…

《大数据分析-数据仓库项目实战》学习笔记

目录 基本概念 数据仓库 数据仓库整体技术架构 数据仓库主题 数据集市 数据仓库的血缘关系 数据仓库元数据管理 数据仓库的指标 数据仓库维度概念 HDFS Flume Hadoop Kafka 数据仓库分层模型 Superset 即席查询 Sqoop Atlas元数据管理 项目需求描述 系统目标…

python 对矩阵与矩阵之间对应位置的元素,做softmax操作,代码实战

1.对矩阵中对应位置的元素&#xff0c;做softmax 对于一个向量&#xff0c;softmax函数会对其中每一个元素进行指数运算&#xff0c;然后除以所有元素指数和的结果。当将其应用到多个矩阵的相应位置上时&#xff0c;我们实际上是在对每个位置的一组数&#xff08;从各个矩阵的同…

pyqt学习过程中的问题

1&#xff0c; 2. 3.传递参数&#xff1a; 第二个函数缺少参数self, 第三种方法&#xff1a;可以使用 lambda 表达式 # 连接按钮的点击信号到槽函数&#xff0c;传递一个参数 self.button.clicked.connect(lambda: self.onButtonClicked(10))def onButtonClicked(self, value)…

基于ChatGPT 和 OpenAI 模型的现代生成式 AI

书籍&#xff1a;Modern Generative AI with ChatGPT and OpenAI Models: Leverage the capabilities of OpenAIs LLM for productivity and innovation with GPT3 and GPT4 作者&#xff1a;Valentina Alto 出版&#xff1a;Packt Publishing 书籍下载-《基于ChatGPT 和 Op…

Taro 快速开始

大家好我是苏麟 , 今天聊聊Trao. 官网 : Taro 介绍 | Taro 文档 (jd.com) 点击快速开始 全局安装 CLI 初始化一个项目 选择配置 : 根据自己需求选择 安装失败先不用管 , 用前端工具打开项目 npm install 安装 , 显示安装失败 怎么解决 ? : 查看报错信息 百度 , 问 AI 工具 运…

【Docker系列】Linux部署Docker Compose

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

前端无样式id或者class等来定位标签

目录&#xff1a; 1、使用背景2、代码处理 1、使用背景 客户使用我们产品组件&#xff0c;发现替换文件&#xff0c;每次替换都会新增如下的样式&#xff0c;造就样式错乱&#xff0c;是组件的文件&#xff0c;目前临时处理的话就是替换文件时删除新增的样式&#xff0c;但是发…