【多模态】30、Monkey | 支持大尺寸图像输入的多任务多模态大模型

在这里插入图片描述

文章目录

    • 一、背景
    • 二、方法
      • 2.1 Enhancing Input Resolution
      • 2.2 Multi-level Description Generation
      • 2.3 Multi-task Training
    • 三、效果
      • 3.1 Image Caption
      • 3.2 General VQA
      • 3.3 Scene Text-centric VQA
      • 3.4 Document-oriented VQA
      • 3.5 消融实验
      • 3.6 可视化

论文:Monkey : Image Resolution and Text Label Are Important Things for Large Multi-modal Models

代码:https://github.com/Yuliang-Liu/Monkey

出处:华中科大

时间:2024.02

贡献:

  • 模型支持大于 1344x896 分辨率的输入,无需预训练。比在大型语言模型(LMMs)中常用的 448x448 分辨率大了很多,能更好的识别和理解小目标或密集目标或密集文本
  • 模型有很好的上下文关联。作者引入了一种多级描述生成的方法,该方法能够提高模型捕捉不同目标之间关系的能力
  • Monkey 模型在多个测评数据集上都有很好的表现。作者在 18 个数据集上进行了测试,Monkey 模型在图像标题生成、常规视觉问题问答、以场景文本为中心的视觉问答、以文档为导向的视觉问答等任务上的表现都很好

在这里插入图片描述

一、背景

LMM 模型能够处理多种不同类型的数据,包括图像、文本、语音等不同模态,对于图像-文本多模态模型,LMM 模型的训练中,图片的分辨率越高,模型能够检测或捕捉到的视觉细节就越丰富,对目标的识别,目标间关系的捕捉,图像中上下文信息的捕捉就更有利,但对于模型来说,很难处理多种不同的分辨率或不同质量的图像,尤其在复杂的场景中更难。

现有的解决方案包括使用具有更大输入分辨率的预训练视觉模块(如LLaVA1.5 [29]),并通过逐渐增加训练过程中的分辨率(如Qwen-VL [3]、PaLI-3 [10]和PaLI-X [9])

但这些方法需要大量的训练资源,并且仍然难以很好的处理更大图像尺寸的图像

为了充分利用大输入分辨率的优势,很重要的一点是图像要有很详细的相关描述,这可以增强模型对图像-文本关系的理解,但是像COYO [6] 和 LAION [45] 通常只有简单的标题,难以满足需求。

Monkey 是什么:一个资源高效的方法,用于提升 LMM 的输入分辨率

  • 一般的方法:直接对 ViT 进行插值来增加输入分辨率,但这样做效率不高
  • Monkey 使用的方法:将大分辨率的输入图片使用滑动窗口切分成小的 patches,每个 patch 独立的输入静态(不训练)的 visual encoder,编码器经过 LoRA(Low-Rank Adaptation)调整,和一个可训练的视觉重采样器增强,增强了其功能。
  • 这种方式利用了现有的大型多模态模型,避免了从头开始进行广泛预训练的需要。通常这些编码器是在较小的分辨率(例如448×448)上训练的,从头开始训练成本很高。通过将每个图像块调整到编码器支持的分辨率,可以维持原有的训练数据分布。
  • 为了更好的利用大分辨率输入,作者还提出了一个自动的多级描述生成的方法,这个方法能够无缝结合多个生成器的简介,来为图片生成高质量、丰富的标题数据,利用的模型如下,作者使用这些模型生成了全面且分层的标题,能够捕捉到广泛的视觉细节:
    • BLIP2:对图像-文本理解很细腻
    • PPOCR:强大的 OCR 识别模型
    • GRIT:擅长粒度化的图像-文本对齐
    • SAM:用于语义对齐的动态模型
    • ChatGPT:有很好的上下文理解和语言生成能力

Vision Transformer (ViT) 使用了 Transformer 架构来处理图像数据。在深度学习中,提升模型处理的图像分辨率通常可以帮助模型捕捉到更细粒度的特征,这在某些任务中可能会提高模型的性能。然而,直接在高分辨率的图像上训练模型会大大增加计算成本和内存需求。

为了解决这个问题,通常会采取以下几种方法之一:

  • 渐进式训练:这种方法首先在低分辨率的图像上训练模型,然后逐步增加图像的分辨率。这样可以在早期阶段以较低的计算成本训练模型,并在模型逐渐适应更高分辨率的图像时增加细节。

  • 插值:在某些情况下,研究人员可能会选择在预训练的模型基础上,对输入图像进行插值以提高其分辨率。这样做的目的是利用模型在低分辨率图像上学到的知识,并通过插值来适应更高分辨率的图像。插值方法可以是最近邻插值、双线性插值、双三次插值等。

  • 多尺度训练:这种方法同时使用不同分辨率的图像来训练模型。模型在从不同分辨率的图像中学习特征时,可以更好地泛化到新的、更高分辨率的图像上。

对于 Vision Transformer (ViT) 而言,由于其结构是将图像分割成多个小块(patch)然后输入到 Transformer 中,因此提升分辨率时需要考虑如何调整这些小块的大小和数量。通过对 ViT 进行插值,可以在不显著改变模型架构的情况下,适应更高分辨率的图像,这是一种相对简单且有效的方法来提升模型处理高分辨率图像的能力。


二、方法

在这里插入图片描述
Monkey 模型的结构如图 2 所示,输入的图片被分成了 patches,这些 patches 将被输入 ViT,ViT 是共享参数的,经过 ViT 后得到特征,随后,局部和全局特征通过共享重采样器和大型语言模型(Large Language Model,简称LLM)进行处理,从而生成所需的答案。

2.1 Enhancing Input Resolution

  • 首先,输入一个图片,HxWx3
  • 接着,使用滑窗来进行切分(滑窗大小为 KaTeX parse error: Undefined control sequence: \time at position 5: H_v \̲t̲i̲m̲e̲ ̲W_v,滑窗大小的宽高也就是 original LMM 所支持的宽高大小),切分成小的图像块儿
  • 然后,将切分后的图像块儿输入共享参数的 encoder,每个 encoder 的输入都是不同的图像块儿,此外,会给每个 encoder 搭配一个 LoRA 来适应每个 encoder 对不同位置的图像块儿的学习,有助于模型深入理解空间和上下文的关系,且没有多余引入参数。为了保证整个输入图像的结构信息,作者将原图还会 resize 到 KaTeX parse error: Undefined control sequence: \time at position 5: H_v \̲t̲i̲m̲e̲ ̲W_v 的大小,所以,作者会将独立的图像块儿和 resize 后的 global image 都经过 encoder 编码
  • 再后,经过 shared resampler ,这里的 resampler 是源于 Flamingo,主要有两个作用,一个是组合所有的 visual information,另一个是捕捉更高级的语义视觉表达,映射到 language feature space。resampler 是通过 cross-attention module 实现的,其中可训练的 embedding 特征是 query,image features 是 key。
  • 最后,将 shared resampler 的输出和文本问题输入一起输入大语言模型 LLM

2.2 Multi-level Description Generation

之前的方法如 LLaVa、QWen-VL 都是使用 LAION 和 COYO 或 CC3M 来训练,但这些数据的文本标签非常简单,缺失了对图像的细致的描述,所以,尽管使用了高分辨率的训练数据,确没有挖掘出图像的更细致的信息

基于此,本文提出了一种生成多层描述的方法,能够生成丰富且高质量的描述,作者使用了多个模型来实现:

  • BLIP2:能够为 image 和 text 的关系提供一个很深入的理解
  • PPOCR:强大的 OCR 识别模型
  • GRIT:擅长粒度化的图像-文本对齐
  • SAM:用于语义对齐的动态模型
  • ChatGPT:有很好的上下文理解和语言生成能力

在这里插入图片描述

整个流程如图 3 所示:

  • 第一步:使用 BLIP2 的 Q-former 来生成 overall caption,同时保留 CC3M 的注释来提供上下文;使用 GRIT 这个 region-to-text 模型,对特定区域、目标生成详细的描述,GRIT 模型能够检测目标同时生成描述, PPOCR 能够从中提取到文本 text 信息;使用 SAM 进行分割,然后使用 BLIP2 来进行描述。
  • 第二步:使用 BLIP2 对 region caption 和 segmentation caption 的结果进行过滤,剔除掉分数匹配较低的 caption
  • 第三步:将 global captions, localized descriptions, text extracts, object details with spatial coordinates 一起送入 ChatGPT 进行微调,让 ChatGPT 生成准确且上下文丰富的图像描述

在这里插入图片描述
在这里插入图片描述

2.3 Multi-task Training

本文模型支持多种不同的任务:

  • image caption: “Generate the captionin English:” for basic captions, “Generate the detailed caption in English:” for more intricate ones
  • 对 image-based 问题的回答: “{question} Answer: {answer}.”
  • 同时处理 text 和 image

本文使用的数据集:

在这里插入图片描述

三、效果

模型实现细节:

  • 作者使用 Vit-BigG [21] 和 LLM from QwenVL [3] 分别作为预训练好的多模态模型来使用
  • 由于 vision encoder 已经训练的很好了,所以作者只做了 instruction-tuning。在 instruction-tuning 时,滑窗的宽高都使用的 448x448 来匹配 Qwen-VL 的 encoder 尺寸
  • 对于所有图像块儿,作者使用的是 resampler 是一样的。可学习的查询 query 与图像的局部特征(patches)进行交互,用于提取重要信息。对于每个 patch,都使用相同的 256 维可学习 query。这些 query 是模型中的参数,可以通过训练来优化。
  • 由于训练时间有限,主要实验使用的是896×896像素大小的图像
  • 对于 LoRA:LoRA 是模型的一部分,用于调整模型的注意力机制和多层感知机(MLP)。在这里,注意力模块的秩设置为16,编码器中MLP的秩设置为32。秩在这里指的是LoRA中用于调整权重的参数数量,它影响模型的复杂度和能力。
  • 模型参数:Monkey 总参数量 9.8B(98亿)
    • 大型语言模型:包含 7.7B(Billion)参数。
    • 重采样模块:包含 0.09B(Million)参数。
    • 编码器:包含 1.9B(Billion)参数。
    • LoRA:包含 0.117B(Billion)参数。

训练细节:

  • 数据:使用 CC3M 数据集中的数据,使用本文方法生成了描述,共 427k image-text pairs
  • 优化器:AdamW
  • 学习率:1e-5,cosine 学习率下降模式
  • batch size:1024
  • 训练时长:40 A800 天 / epoch

3.1 Image Caption

作者使用 Flickr30K 和 TextCaps 作者 benchmark 来测试这个任务

在这里插入图片描述

3.2 General VQA

General visual question answering (VQA)

在这里插入图片描述

3.3 Scene Text-centric VQA

在这里插入图片描述

3.4 Document-oriented VQA

在这里插入图片描述

3.5 消融实验

在这里插入图片描述

在这里插入图片描述

3.6 可视化

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

和其他模型的对比:

在这里插入图片描述
在这里插入图片描述

不同分辨率下识别的效果对比:分辨率越小,错误越多

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/327522.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【JS面试题】this

this取什么值,是在函数执行的时候确定的,不是在函数定义的时候确定的! this的6种使用场景: ① 在普通函数中使用:返回window对象 ② 使用call apply bind 调用:绑定的是哪个对象就返回哪个对象 ③ 在对象…

MacApp自动化测试之Automator初体验

今天我们继续讲Automator的使用。 初体验 启动Automator程序,选择【工作流程】类型。从资源库区域依次将获取指定的URL、从网页中获得文本、新建文本文件三个操作拖进工作流创建区域。 然后修改内容,将获取指定的URL操作中的URL替换成https://www.cnb…

【C/C++笔试练习】DNS劫持、三次握手、TCP协议、HTTPS、四次挥手、HTTP报文、拥塞窗口、POP3协议、UDP协议、收件人列表、养兔子

文章目录 C/C笔试练习选择部分(1)DNS劫持(2)三次握手(3)TCP协议(4)HTTPS(5)四次挥手(6)HTTP报文(7)拥塞窗口&a…

JVM面试题:85道JVM虚拟机面试题及答案

面试题 1 .简述Java堆的结构?什么是堆中的永久代(Perm Gen space)? JVM整体结构及内存模型 试题回答参考思路: 1、堆结构 JVM的堆是运行时数据区,所有类的实例和数组都是在堆上分配内存。它在JVM启动的时候被创建。对象所占的堆内存是由自…

【AI学习】聊两句昨夜OpenAI的GPT-4o

蹭个热点,聊两句昨夜的大事件——OpenAI发布GPT-4o,我看到和想到的一点东西。 首先是端到端方法,前面关于深度学习的文章,对端到端的重要性做了一些学习,对端到端这个概念有了一些理解。正如Richard Sutton在《苦涩的…

C++数据结构——红黑树

前言:本篇文章我们继续来分享C中的另一个复杂数据结构——红黑树。 目录 一.红黑树概念 二.红黑树性质 三.红黑树实现 1.基本框架 2.插入 3.判断平衡 四.完整代码 总结 一.红黑树概念 红黑树,是一种二叉搜索树,但在每个结点上增加一个…

一个不知名的开源项目可以带来多少收入

起源 2020 年新冠疫情开始蔓延,当时我在同时经营 3 个不同的公司。除了其中的体育赛事平台因为疫情关门大吉之外,另外两个公司并没有受影响,营收和利润反而都持续增加。但是连续几个月不能出远门,也不能随便见朋友和客户&#xff…

Kafka学习-Java使用Kafka

文章目录 前言一、Kafka1、什么是消息队列offset 2、高性能topicpartition 3、高扩展broker 4、高可用replicas、leader、follower 5、持久化和过期策略6、消费者组7、Zookeeper8、架构图 二、安装Zookeeper三、安装Kafka四、Java中使用Kafka1、引入依赖2、生产者3、消费者4、运…

【C语言】/*操作符(下)*/

目录 一、操作符的分类 二、二进制和进制转换 2.1 进制 2.2 进制之间的转换 三、原码、反码、补码 四、单目操作符 五、逗号表达式 六、下标引用操作符[] 七、函数调用操作符() 八、结构体成员访问操作符 8.1 直接访问操作符(.) 8.2 间接访问操作符(->) 九、操作符…

【Spring】初识 Spring AOP(面向切面编程)

目录 1、介绍AOP 1.1、AOP的定义 1.2、AOP的作用 1.3、AOP的核心概念及术语 2、AOP实现示例 3、EnableAspectJAutoProxy注解 1、介绍AOP 1.1、AOP的定义 AOP(Aspect Orient Programming),直译过来就是面向切面编程,AOP 是一…

[动画详解]LeetCode151.翻转字符串里的单词

💖💖💖欢迎来到我的博客,我是anmory💖💖💖 又和大家见面了 欢迎来到动画详解LeetCode算法系列 用通俗易懂的动画让算法题不再神秘 先来自我推荐一波 个人网站欢迎访问以及捐款 推荐阅读 如何低成…

十二生肖Midjourney绘画大挑战:释放你的创意火花

随着AI艺术逐渐进入大众视野,使用Midjourney绘制十二生肖不仅能够激发我们的想象力,还能让我们与传统文化进行一场新式的对话。在这里,我们会逐一提供给你创意满满的绘画提示词,让你的作品别具一格。而且,我们还精选了…

Python进行excel处理-01

最近干采购,每个月要对供应商的对账单,对对应的采购订单号和物料编号的价格和数量,是不是和物料管控总表里面的价格数量是不是一致,于是写了一个代码。 从总表里面找到,对账单里对应采购订单和物料编码的数据&#xf…

vscode 通过ssh 远程执行ipynb +可以切换conda env

主要是保证几个点 远程服务器python 环境没问题 conda这些也都有的ssh的账户 是有conda权限的没有免密就输入密码 免密教程就是最基本的那种 公钥copy过去就行了vscode 那几个插件都要装好 开始操作 首先 vscode 点击左侧工具栏中的扩展,搜索“ssh”,…

计算机vcruntime140.dll找不到如何修复,分享5种靠谱的修复教程

当您在运行某个应用程序或游戏时遇到提示“找不到vcruntime140.dll”,这通常意味着系统中缺少了Visual C Redistributable for Visual Studio 2015或更高版本的一个重要组件。这个错误通常发生在运行某些程序时,系统无法找到所需的动态链接库文件。小编将…

(四十二)第 6 章 树和二叉树(树的二叉链表(孩子-兄弟)存储)

1. 背景说明 2. 示例代码 1) errorRecord.h // 记录错误宏定义头文件#ifndef ERROR_RECORD_H #define ERROR_RECORD_H#include <stdio.h> #include <string.h> #include <stdint.h>// 从文件路径中提取文件名 #define FILE_NAME(X) strrchr(X, \\) ? strrch…

15-ps命令

常用选项 aux axjf a&#xff1a;显示一个终端所有的进程u&#xff1a;显示进程的归属用户及内存使用情况x&#xff1a;显示没有关联控制终端j&#xff1a;显示进程归属的进程组idf&#xff1a;以ASCII码的形式显示出进程的层次关系 ps aux其中| more是只显示一部分内容&…

【实战】算法思路总结

面试过程中&#xff0c;总是被拷打&#xff0c;信心都要没了。但是也慢慢摸索出一些思路&#xff0c;希望对大家有帮助。 &#xff08;需要多用一下ACM模式&#xff0c;力扣模式提供好了模板&#xff0c;自己在IDEA里面写的话&#xff0c;还是会有些陌生&#xff09; 0、基本…

Edge(微软)——一款充满创新精神的浏览器

随着科技的不断进步&#xff0c;互联网浏览器已经成为我们日常生活中不可或缺的工具。在这个领域&#xff0c;微软Edge作为一款新型的浏览器&#xff0c;凭借其独特的功能和优秀的性能&#xff0c;逐渐在市场上占据了一席之地。本文将深入探索微软Edge的特点、优势以及它如何改…

Acrobat Pro DC 2023 for Mac:PDF处理的终极解决方案

Acrobat Pro DC 2023 for Mac为Mac用户提供了PDF处理的终极解决方案。它具备强大的文档处理能力&#xff0c;无论是查看、编辑还是创建PDF文件&#xff0c;都能轻松胜任。在编辑功能方面&#xff0c;Acrobat Pro DC 2023支持对文本、图像进行精准的修改和调整&#xff0c;还能添…