DNA 8. 癌症的突变异质性及寻找新的癌症驱动基因(MutSigCV)

点击关注,桓峰基因

桓峰基因

生物信息分析,SCI文章撰写及生物信息基础知识学习:R语言学习,perl基础编程,linux系统命令,Python遇见更好的你

120篇原创内容

公众号

桓峰基因公众号推出基于基因组变异数据生信分析教程并配有视频在线教程,目前整理出来的教程目录如下:

DNA 1. Germline Mutation Vs. Somatic Mutation 傻傻分不清楚

DNA 2. SCI 文章中基因组变异分析神器之 maftools
DNA 3. SCI 文章中基因组变异分析神器之 maftools
DNA 4. SCI 文章中基因组的突变信号(maftools)
DNA 5. 基因组变异文件VCF格式详解
DNA 6. 基因组变异之绘制精美瀑布图(ComplexHeatmap)
DNA 7. 基因组拷贝数变异分析及可视化 (GISTIC2.0)
DNA 8. 癌症的突变异质性及寻找新的癌症相关基因(MutSigCV)

前 言

目前国际主要基因组项目旨在建立一个全面的、与癌症的发生和发展有关的所有基因目录。这些研究包括对匹配的正常肿瘤样本进行排序,然后进行数学分析,以确定那些突变发生频率高于预期的随机基因。在这里,我们描述了癌症基因组研究的一个基本问题:随着样本量的增加,由目前的分析方法产生的假定重要的基因列表迅速增加到数百个。该列表包括许多不可信的基因(如编码嗅觉受体和肌肉蛋白肌肽的基因),表明大量的假阳性发现掩盖了真正的驱动事件。我们表明,这一问题主要源于突变异质性,并提供了一种新的分析方法MutSigCV来解决这一问题。将MutSigCV应用于3083对正常肿瘤的外显子组序列,发现癌症类型中突变频率和频谱的异常变化,揭示了突变过程和疾病病因,以及全基因组的突变频率,这与DNA复制时间和转录活性密切相关。通过将突变异质性纳入分析,MutSigCV能够消除大多数明显的人工发现,并使识别真正与癌症相关的基因成为可能.

图片

下图说明了整个概念。左边是一组基因组(或外显子组),每个都来自不同癌症患者的肿瘤细胞测序。基因用彩色条纹表示,体细胞突变用红色三角形表示。首先,将肿瘤聚集在一起,统计突变,然后计算每个基因的得分和p值。选择显著性阈值来控制虚假发现率(FDR),超过该阈值的基因被报告为显著突变。

图片

突变的分类方法有很多种,按照其是否会导致癌症进展,可以分为驱动突变(driver mutation)和乘客突变(passenger mutation)。前者在肿瘤细胞中具有选择性生长优势的突变,后者对肿瘤细胞的选择性生长优势无直接或间接影响的突变。

图片

软件下载安装

下载及安装包括两部分,一部分是需要先安装matlab,如果您的已经配置完成,那请忽略;一部分是MutSigCV安装。

  1. 安装 matlab

在软件中指出使用的matlab版本号:R2016a

$le readme.txt
MATLAB Compiler
1. Prerequisites for Deployment 
. Verify the MATLAB Runtime is installed and ensure youhave installed version 9.0.1 (R2016a).

官网下载链接:

https://ssd.mathworks.cn/supportfiles/downloads/R2016a/deployment_files/R2016a/installers/glnxa64/MCR_R2016a_glnxa64_installer.zip

解压安装

cd ~/software/
mkdir MatlabMCR
cd MatlabMCR
wget -c http://ssd.mathworks.com/supportfiles/downloads/R2016a/deployment_files/R2016a/installers/glnxa64/MCR_R2016a_glnxa64_installer.zip
unzip MCR_R2016a_glnxa64_installer.zip
./install

安装成功标记,如下:

(Jun 11, 2022 18:35:32) Exiting with status 0
(Jun 11, 2022 18:35:32) End - Successful.

设置环境变量

安装过程需要选择一个有权限的安装路径,安装好了之后可能要手动赋值一个变量:

LD_LIBRARY_PATH=/home/data/t030339/software/MutSigCV/MatlabMCR/v901//runtime/glnxa64:/home/data/t030339/software/MutSigCV/MatlabMCR/v901//bin/glnxa64:/home/data/t030339/software/MutSigCV/MatlabMCR/v901//sys/os/glnxa64:/home/data/t030339/software/MutSigCV/MatlabMCR/v901//sys/opengl/lib/glnxa64

2. 安装 MutSigCV

先下载,之后解压即可完成,这个软件包使用 matlab 开发的,所以安装很轻松,就是注意一下上面安装 matlab 时 一些细节可以了!

cd ~/software
wget -c https://software.broadinstitute.org/cancer/cga/sites/default/files/data/tools/mutsig/MutSigCV_1.41.zip
unzip MutSigCV_1.41.zip
cd MutSigCV_1.41

下载相应的数据文件。利用wget 下载更方便,加参数 -c 防止断掉,可以续传,这个非常重要。

wget -c http://www.broadinstitute.org/cancer/cga/sites/default/files/data/tools/mutsig/reference_files/gene.covariates.txt
wget -c http://www.broadinstitute.org/cancer/cga/sites/default/files/data/tools/mutsig/reference_files/exome_full192.coverage.zip
wget -c http://www.broadinstitute.org/cancer/cga/sites/default/files/data/tools/mutsig/reference_files/mutation_type_dictionary_file.txt
wget -c http://www.broadinstitute.org/cancer/cga/sites/default/files/data/tools/mutsig/reference_files/chr_files_hg19.zip
wget -c https://software.broadinstitute.org/cancer/cga/sites/default/files/data/tools/mutsig/MutSigCV_example_data.1.0.1.zip
wget -c https://software.broadinstitute.org/cancer/cga/sites/default/files/data/tools/mutsig/LUSC.MutSigCV.input.data.v1.0.zip

实例操作

1. 数据读取

MutSigCV 输入文件有 5 个,一个自己的数据,格式为.maf文件,其他四个都有软件自带的数据库文件!我们看看每个文件的格式。软件里的例子来之 2013年发表在 nature 上的一篇文章,癌症的突变异质性和寻找新的癌症相关基因。

图片

a. LUSC.maf

我们只需要准备自己的.maf文件即可,格式如下:

i. “gene” 列:突变所在的基因的名字 (也可以称为 “Hugo_Symbol”);

ii. “patient” 列:突变所在的病人的名字 (也可以被称为 “Tumor_Sample_Barcode”);

3. “effect” 列:突变在这个基因上所产生的作用类型:分为 “nonsilent” (蛋白质序列改变或可变剪切), “silent” (同义突变),或"noncoding" (内含子区或UTR区)

4. “categ” ’列:突变分类. MutSigCV依据突变所在的DNA序列将突变分成了7类,对于每一种分类,有不同的风险值. 如果用户不知道每一行的categ类型,从版本1.3开始程序可以自动计算,只需要用户提供Variant_Classification, Reference_Allele, and Tumor_Seq_Allele1+2这4列的信息即可。

1. CpG transitions

2. CpG transversions

3. C:G transitions

4. C:G transversions

5. A:T transitions

6. A:T transversions

7. null+indel mutations

转换(transitions)和颠换(transversions)

转换:嘌呤和嘌呤之间的替换,或嘧啶和嘧啶之间的替换。

颠换:嘌呤和嘧啶之间的替换

图片

需要注意的是,与MutSig捆绑在一起的协变量文件(gene.covariates.txt和exome_full192.coverage.txt)具有非标准的基因名称(non Hugo_Symbols)。MAF中的Hugo_Symbols与协变量文件中的非Hugo_symbols之间的差异导致MutSig程序忽略此类基因。可以用 R包 maftools 的 prepareMutSig 函数来进行纠正,获得校正后的文件。

library(maftools)
#Prepare MAF file for MutSigCV analysis
lusc<-read.maf("LUSC.maf")
lusc.mutsig.corrected = prepareMutSig(maf = lusc)
lusc_sig = read.maf(maf = lusc.mutsig.corrected)

b. exome_full192.coverage.txt

gene"列: 基因名, 与突变文件的基因名列对应

“effect"列: 分类为"silent”, “nonsilent”, or “noncoding”

"categ"列: 与突变文件一致

number of sequenced bases for patient#1 in this gene and effect/categ bin

number of sequenced bases for patient#2 in this gene and effect/categ bin

$ le ../exome_full192.coverage.txt
gene    effect  categ   coverage
A1BG    noncoding       A(A->C)A        12
A1BG    noncoding       A(A->C)C        14
A1BG    noncoding       A(A->C)G        15
A1BG    noncoding       A(A->C)T        9
A1BG    noncoding       A(A->G)A        12

c. gene.covariates.txt

这个表格列出了每个基因的基因组参数。它们被称为协变量,因为它们与突变率共变。它们将被用来计算“协变量空间”中成对基因之间的距离,以确定每个基因的最近邻居,以便汇集关于局部背景突变率(BMR)的信息。

$ le ../gene.covariates.txt
gene    expr    reptime hic
A1BG    1621097 406     -25
A1CF    113129  613     19
A2BP1   2474    1138    -47
A2M     348389  364     17
A2ML1   300254  407     12

d. mutation_type_dictionary_file.txt

当MAF文件没有effect列时是必须的,另外4个文件是当我们只有MAF文件的时候需要的,建议也同时下载。

Variant_Classification  effect
Silent  silent
Synonymous      silent
Missense        nonsilent
Missense_Mutation       nonsilent
Nonsense        null

e. chr_files_hg19

这是一个文件夹按照染色体的生成的参考基因组序列文件,打开看看,其实就是核酸序列,如下:

$ ll ../chr_files_hg19 | le
chr10.txt*
chr11_gl000202_random.txt*
chr11.txt*
chr12.txt*
chr13.txt*

2. 实际操作

准备好所有数据就可以运行了,这个例子中的数据还算很快的,大概2-3钟左右吧!

../MutSigCV_1.41/run_MutSigCV.sh  ~/software/MutSigCV/MatlabMCR/v901/ LUSC.maf ../exome_full192.coverage.txt ../gene.covariates.txt LUSC_mutsig ../mutation_type_dictionary_file.txt ../chr_files_hg19
###运行过程
------------------------------------------
Setting up environment variables
---
LD_LIBRARY_PATH is .:/home/data/t030339/software/MutSigCV/MatlabMCR/v901//runtime/glnxa64:/home/data/t030339/software/MutSigCV/MatlabMCR/v901//bin/glnxa64:/home/data/t030339/software/MutSigCV/MatlabMCR/v901//sys/os/glnxa64:/home/data/t030339/software/MutSigCV/MatlabMCR/v901//sys/opengl/lib/glnxa64======================================MutSigCVv1.4(c) Mike Lawrence and Gaddy GetzBroad Institute of MIT and Harvard
======================================MutSigCV: PREPROCESS
--------------------
Loading mutation_file...
Loading coverage file...
Processing mutation "effect"...
NOTE:  This version now ignores "is_coding" and "is_silent".Requires Variant_Classification/type column and mutation_type_dictionary so we can assign nulls.
Processing mutation "categ"...
"categ" of mutation_file does not match coverage_file.  Ignoring it.
NOTE:  unable to perform category discovery, because no chr_files available.Will use two categories: missense and null+indel.
Collapsing coverage...
Writing preprocessed files.[save_struct] 23/47 24/47 25/47 26/47 27/47 28/47 29/47 30/47 31/47 32/47 33/47 34/47 35/47 36/47 37/47 38/47 39/47 40/47 41/47 42/47 43/47 44/47 45/47 46/47 47/47  [collapse] [write]
MutSig_preprocess finished.MutSigCV: RUN
-------------
Loading mutation_file...
NOTE:  Both "gene" and "Hugo_Symbol" are present in mutation_file.  Using "gene".
NOTE:  Both "patient" and "Tumor_Sample_Barcode" are present in mutation_file.  Using "patient".
Loading coverage file...
Loading covariate file...
NOTE:  4/16885 gene names could not be mapped to coverage information.  Excluding them.
NOTE:  Trimming "-Tumor" from patient names.
NOTE:  Converting "-" to "_" in patient names.
Building n and N tables...
Processing covariates...
Finding bagels...  1000/18862 2000/18862 3000/18862 4000/18862 5000/18862 6000/18862 7000/18862 8000/18862 9000/18862 10000/18862 11000/18862 12000/18862 13000/18862 14000/18862 15000/18862 16000/18862 17000/18862 18000/18862 
Expanding to (x,X)_gcp...
Calculating p-value using 2D Projection method...  1000/18862 2000/18862 3000/18862 4000/18862 5000/18862 6000/18862 7000/18862 8000/18862 9000/18862 10000/18862 11000/18862 12000/18862 13000/18862 14000/18862 15000/18862 16000/18862 17000/18862 18000/18862 
Done.  Wrote results to LUSC_mutsig.sig_genes.txt

结果解析

生成了4个结果文件,下面重要的文件都已经加一定的注释,方便大家理解,如下:

LUSC_mutsig.categs.txt
LUSC_mutsig.coverage.txt
LUSC_mutsig.mutations.txt
LUSC_mutsig.sig_genes.txt

a. LUSC_mutsig.categs.txt

left    from    change  right   autoname        name    type
ACGT    AC      in      ACGT    missense        missense        point
ACGT    AC      in      ACGT    null+indel      null+indel      non-point

b. LUSC_mutsig.coverage.txt

覆盖表格告诉我们有多少核苷酸被测序到足够的深度以进行突变调用。

gene    effect  categ   coverage
A1BG    noncoding       missense        3309
A1BG    noncoding       null+indel      3309
A1BG    nonsilent       missense        3438
A1BG    nonsilent       null+indel      3438
A1BG    silent  missense        1116

c. LUSC_mutsig.mutations.txt

Hugo_Symbol     Entrez_Gene_Id  Center  NCBI_Build      Chromosome      Start_position  End_position  Strand  Variant_Classification  Variant_Type    Reference_Allele        Tumor_Seq_Allele1       Tumor_Seq_Allele2       dbSNP_RS        dbSNP_Val_Status        Tumor_Sample_Barcode    Matched_Norm_Sample_Barcode     Match_Norm_Seq_Allele1  Match_Norm_Seq_Allele2  Tumor_Validation_Allele1        Tumor_Validation_Allele2        Match_Norm_Validation_Allele1   Match_Norm_Validation_Allele2   Verification_Status     Validation_Status       Mutation_Status Sequencing_Phase        Sequence_Source Validation_Method       Score   BAM_file        Sequencer       Genome_Change   Annotation_Transcript   Transcript_Strand       Transcript_Exon Transcript_Position     cDNA_Change     Codon_Change    Protein_Change  gene    patient effect  chr     start   ref_allele      categ
PHTF1   10745   broad.mit.edu   37      1       114242392       114242393       +       Frame_Shift_Ins INS     -       T       T                       LUSC-18-3406-Tumor      LUSC-18-3406-Normal   Phase_I Unspecified    Illumina GAIIx  g.chr1:114242392_114242393insT  uc009wgp.1      -       16 2527_2528       c.2075_2076insA c.(2074-2076)AAGfs      p.K692fs        PHTF1   LUSC-18-3406-Tumor      null    1       114242392       -       null+indel      

d. LUSC_mutsig.sig_genes.txt

****该文件即为MutSigCV 的结果报告。MutSig输出分析中的“ nnei”,“ x”和“ X”值是算法计算得到的基因背景突变率。我们重点关注的是显著性的 p 值和 q 值,后者为校正过的 p 值。****该文件中包含了Driver Gene,从P值由小到大排列。

gene    expr    reptime hic     N_nonsilent     N_silent        N_noncoding     n_nonsilent     n_silent        n_noncoding     nnei    x       X       p       q
KEAP1   1996822 207     30      780570  225675  327627  24      0       1       36      117     41857491        0       0

结果展示

根据最后的结果报告,筛选 q<0.05 的基因,通过使用R包maftools绘制瀑布图,如下:

library(maftools)
lusc = read.maf(maf ="LUSC_mutsig.mutations.txt")
sig_genes <- read.table("LUSC_mutsig.sig_genes.txt",header = T,sep="\t")
head(sig_genes,2)
#   gene    expr reptime hic N_nonsilent N_silent N_noncoding n_nonsilent n_silent n_noncoding nnei   x        X            p            q
#1  KEAP1 1996822     207  30      780570   225675      327627          24        0           1   36 117 41857491 0.000000e+00 0.000000e+00
#2 NFE2L2  372300     145  36      770481   203373      353646          28        0           5   16  98 21536829 0.000000e+00 0.000000e+00
#3   PTEN  259678     300  34      535956   124608      917037          16        0           3   45 178 53250450 0.000000e+00 0.000000e+00
#4 CDKN2A  225405     357 -15      422145   109917      240543          26        1           3    6  40  5125035 3.330669e-16 1.570577e-12
#5   TP53 2069567     213  34      546753   150981      948897         148        7           2    1  12  1843632 9.992007e-16 3.769385e-12
#6   MLL2 1770671     214  65     6760515  2174091     3518406          40        7          13   13  72 19828071 5.907712e-09 1.857188e-05sig_filter<-sig_genes[sig_genes$q<0.05,]$gene
sig_filter
#[1] "KEAP1"  "NFE2L2" "PTEN"   "CDKN2A" "TP53"   "MLL2"   "RB1"   
#[8] "FBXW7"  "PSG2"   "HLA-A"
oncoplot(lusc,genes = sig_filter)

图片

整个流程就也算是 SOP,有背景,实操,结果解读,下面大家可以关注,桓峰基因,每日更新,不停息!

References:

1. Lawrence, M. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214-218 (2013).

2. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers [published correction appears in Nature. 2012 Nov 8;491(7423):288.

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/32777.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

生物(一)ctDNA突变检测应用于肿瘤早期筛查

原创&#xff1a;yongzhe 提到cfDNA应用于肿瘤早期筛查&#xff0c;是一个充满希望和挑战的问题。目前的热门方向是甲基化&#xff0c;相当多一部分公司以此为研发方向&#xff0c;还包括ctDNA突变检测&#xff0c;cnv检测&#xff0c;CTC&#xff0c;外泌体检测等都在探索研究…

利用GATK4.1 mutect2寻找体细胞突变(SNV和INDEL)

今天梳理一下最最最最(最X100)常用的mutect2体细胞变异分析流程。主要用来分析肿瘤配对样本,寻找体细胞突变比如SNV和INDEL。官网上已经有了详细的英文版教程。 软件版本:GATK4.1.1.0 官网教程:https://gatk.broadinstitute.org/hc/en-us/articles/360035894731-Somatic…

GATK4 最佳实践-生殖细胞突变的检测与识别

欢迎关注"生信修炼手册"&#xff01; GATK4 对于体细胞突变和生殖细胞突变的检测分别给出了对应的pipeline: Germline SNPsIndelsSomatic SNVs Indels 本篇主要关注生殖细胞突变的分析流程Germline SNPsIndels。示意图如下&#xff1a; 图中红色方框部分的从Analysi…

GATK4最佳实践-体细胞突变的检测与识别

欢迎关注"生信修炼手册"&#xff01; 分析体细胞突变时&#xff0c;通常采用tumor_vs_nomal 的实验设计。在检测时&#xff0c;由于同时会检测出生殖细胞突变和体细胞突变&#xff0c;需要做的就是去除生殖细胞突变位点&#xff0c;那么剩下的就是体细胞突变位点了&a…

TCGA差异表达分析|2022.5.1更新

作者&#xff1a;Squirrelity 2022-07-18 补充说明 最近R更新了&#xff0c;很多包都用不了&#xff0c;如果遇到报错或者是运行不了有可能是因为版本问题。 一、加载对应的R包 这里用到十三个包&#xff08;距离上次更新之后又新增了不少方法/包&#xff09;&#xff1a; lib…

病理基因突变综述

颜锐, 梁智勇, 李锦涛, 任菲. 基于深度学习和H&E染色病理图像的肿瘤相关指标预测研究综述[J]. 计算机科学, 2022, 49(2): 69-82. YAN Rui, LIANG Zhi-yong, LI Jin-tao, REN Fei. Predicting Tumor-related Indicators Based on Deep Learning and H&E Stained Patholo…

maftools|TCGA肿瘤突变数据的汇总,分析和可视化

之前介绍了使用maftools | 从头开始绘制发表级oncoplot&#xff08;瀑布图&#xff09; R-maftools包绘制组学突变结果&#xff08;MAF&#xff09;的oncoplot或者叫“瀑布图”&#xff0c;以及一些细节的更改和注释。 本文继续介绍maftools对于MAF文件的其他应用&#xff0c;为…

生信-记一次NCBI-R语言-淋巴癌突变与未突变基因的差异分析

关键词&#xff1a;基因芯片、R、筛选、预处理、差异分析 NCBI-淋巴癌突变与未突变基因的差异分析 PS&#xff1a;好久没分享生信了&#xff0c;这是一年前做的一次生信task&#xff08;准确来说是2018年11月了&#xff09;&#xff0c;这里分享一下给大家&#xff0c;有助于一…

TCGA 亚型突变负荷代码

#1、准备文件/数据并加载相应的包 #1.1下载并加载相应的包&#xff0c;有就直接加载&#xff0c;没有就下载后再加载。 install.packages("pacman") library(pacman) p_load(TCGAbiolinks,DT,tidyverse) BiocManager::install("TCGAbiolinks") library(t…

四、肿瘤全基因组学体细胞点突变特征(The repertoire of mutational signatures in human cancer)

全文链接 一、肿瘤突变特征&#xff1a;碱基置换及插入、缺失突变 单碱基置换&#xff08;49种特征类型&#xff0c;single-base-substitution&#xff0c;SBS&#xff09; 双碱基置换&#xff08;11种特征类型&#xff0c;doublet-base-substitution&#xff0c;DBS&#xf…

TCGA_联合GTEx分析2_查看批次效应

在 TCGA_联合GTEx分析1_得到表达矩阵.tpm_老实人谢耳朵的博客-CSDN博客 中&#xff0c;获取了TCGA和GTEx中样本的表达矩阵数据&#xff0c;数据格式均为tpm。本文对二者进行合并后&#xff0c;通过PCA分析、绘制内参箱线图等方法&#xff0c;查看是否存在批次效应。 关于批次效…

提取TCGA 中体细胞突变数据的表达矩阵

#因为之前的命令调用GDCquery_Maf 发现用不了 #故找到了一些其他的方法&#xff0c;并且自己试着将其弄成了一个表达矩阵。 #代码如下 #1、下载加载相应的包 install.packages("pacman") library(pacman) p_load(TCGAbiolinks,DT,tidyverse) BiocManager::insta…

chatgpt赋能python:Python抢票的绝招

Python 抢票的绝招 随着互联网技术的不断发展&#xff0c;越来越多的人开始享受网购的便利。但是&#xff0c;随着一些热门事件的到来&#xff0c;如演唱会、体育比赛等&#xff0c;大家面临同一个问题&#xff1a;如何抢到热门事件的门票&#xff1f;这时&#xff0c;Python …

CSDN问答

近期AI成为热点话题&#xff0c; ChatGPT&#xff0c; GPT4&#xff0c; new bing&#xff0c; Bard&#xff0c;AI 绘画&#xff0c; AI 编程工具引发大量讨论。请结合自身学习经历&#xff0c;一起来聊聊你对 AI 技术以及其今后发展的看法吧。请在下面的问题中选择一些来回答…

起名源码PHP(宝宝取名源码)

起名源码有助于更好的借助八字风水来帮助起名的需求&#xff0c;其参考了一部中国古代经典文本易经。以这种方式咨询的过程包括通过随机生成的方法确定卦&#xff0c;然后阅读与该卦相关的文本。      演示&#xff1a;m.appwin.top      部分源码&#xff1a;texts.py…

携程英语口语测验题目

携程入职前会有两个测验&#xff1a;CATA能力测验、英语测验&#xff08;部分岗位可能没有英语测验&#xff09; 这两个测验通过&#xff0c;方可进入下面流程&#xff0c;所有这两个测验一定要引起重视&#xff1b; 题型分布 携程英语测验 题型攻略 携程英语测验 总共六部分…

Ubuntu软件安装新选择—星火应用商店(QQ、微信等一网打尽)

Ubuntu软件安装新选择—星火应用商店&#xff08;QQ、微信等一网打尽&#xff09; 1. 星火应用商店介绍2. 下载安装星火应用商店3. 使用星火应用商店安装软件4. 使用星火应用商店更新软件5. 日常软件推荐6. 星火应用商店交流群 1. 星火应用商店介绍 官网地址 http://spark-app…

学生信息后台管理系统(GUI)

一、目的 通过制作学生信息后台管理系统熟悉java中JDBC和CUI(图形用户接口)的使用。 二、实验工具 1.Eclipse IDE Version: 2020-12 (4.18.0) 2.mysql 3.Navicat Premium 15(数据库管理工具) 4.WindowBuilder(java图形用户界面插件) 具体下载和使用可以参考以下链接: 下…

数影周报:SpaceX设计图纸被泄露,拍明芯城正式在纳斯达克上市

本周看点&#xff1a;LockBit勒索软件团伙扬言泄露SpaceX设计图纸&#xff1b;亚马逊宣布将停止 Kindle Newsstand 服务&#xff1b;“拍明芯城”正式在纳斯达克上市...... 数据安全那些事 LockBit勒索软件团伙扬言泄露SpaceX设计图纸 近日&#xff0c;勒索软件组织LockBit给埃…

小米汽车设计图纸泄露,官方称非最终文件;微软裁员遣散费高达8亿美元,人均获赔54万元;苹果暂停自研Wi-Fi芯片|极客头条...

「极客头条」—— 技术人员的新闻圈&#xff01; CSDN 的读者朋友们早上好哇&#xff0c;「极客头条」来啦&#xff0c;快来看今天都有哪些值得我们技术人关注的重要新闻吧。 整理 | 梦依丹 出品 | CSDN&#xff08;ID&#xff1a;CSDNnews&#xff09; 一分钟速览新闻点&#…