机器人工具箱学习(三)

一、动力学方程

  机器人的动力学公式描述如下:
在这里插入图片描述
式中, τ \boldsymbol{\tau} τ表示关节驱动力矩矢量; q , q ˙ , q ¨ \boldsymbol{q} ,\; \dot{\boldsymbol { q }} ,\; \ddot{\boldsymbol { q }} q,q˙,q¨分别为广义的关节位置、速度和加速度; M \boldsymbol{M} M为关节的空间惯量矩阵; C \boldsymbol{C} C为科氏力和离心力耦合矩阵; G \boldsymbol{G} G为重力; F f \boldsymbol{F}_f Ff为关节摩擦力。

  机器人的动力学参数包括惯性参数和摩擦参数。
  (1)惯性参数有:连杆质量 m m m、相对于连杆坐标系的质心矢量 r \boldsymbol{r} r和转动惯量矩阵 I \boldsymbol{I} I。其中,质心矢量 r \boldsymbol{r} r可以表示为:
在这里插入图片描述
式中, r x r_x rx r y r_y ry r z r_z rz分别表示质心矢量 r \boldsymbol{r} r在连杆坐标系下三个坐标轴的分量。转动惯量矩阵 I \boldsymbol{I} I为包含六个独立元素的二维矩阵,表示为:
在这里插入图片描述
式中,主对角元素为惯性矩,非主对角元素为惯性积。

  (2)机器人动力学建模中常用的摩擦模型为库伦-粘滞摩擦模型,其表达式为:
在这里插入图片描述
式中, f c f_c fc f v f_v fv分别表示库伦摩擦系数和粘滞摩擦系数; v v v表示关节速度。注意:对于库伦摩擦系数的处理不同人有不同的处理,有的地方认为库伦摩擦是对称的,即当机器人关节正向旋转和反向旋转时,库伦摩擦力大小相等,方向相反,也即 f c + = f c − f_c^+ = f_c^- fc+=fc;也有的地方认为库伦摩擦是非对称的,即当机器人关节正向旋转和反向旋转时,库伦摩擦力大小不相等。

二、机器人工具箱描述动力学方程

2.1 动力学参数赋值

  在机器人工具箱中,提供了如下动力学参数输入接口:
  (1)Link.m:表示连杆的质量;
  (2)Link.r:表示连杆的质心矢量;
  (3)Link.I:表示连杆的惯量矩阵;
  (4)Link.Jm:表示驱动电机的转动惯量;
  (5)Link.B:表示粘滞摩擦系数;
  (6)Link.Tc:表示库伦摩擦系数;
  (7)Link.G:表示电机齿轮传动比(默认为1)

  这里仍然以3-DOF平面机械臂为例:

%% 动力学
% RRR机械臂
clear;
close all;
clc;%               theta(z)   d(z)     a(x)     alpha(x)  
RRR_L(1) = Link([  0       0        1        0    ],'standard');
RRR_L(2) = Link([  0       0      0.8        0    ],'standard');
RRR_L(3) = Link([  0       0      0.6        0    ],'standard');% 连杆1动力学参数
RRR_L(1).m = 4.0;
RRR_L(1).r = [0.12; 0.08; 0.31];
RRR_L(1).I = [0.32 0.01 0.02;0.01 0.12 0.11;0.02 0.11 0.41];
RRR_L(1).Jm = 0.0012;
RRR_L(1).B = 0.00148;
RRR_L(1).Tc = [+0.395, -0.435];
RRR_L(1).G = 1.2;% 连杆2动力学参数
RRR_L(2).m = 15.2;
RRR_L(2).r = [-0.475; 0.097; 0.06];
RRR_L(2).I = [1.21 0.21 0.32;0.21 0.52 0.11;0.32 0.11 0.51];
RRR_L(2).Jm = 0.0048;
RRR_L(2).B = 0.00329;
RRR_L(2).Tc = [+0.462; -0.561];
RRR_L(2).G = 1.4;% 连杆3动力学参数
RRR_L(3).m = 0.6;
RRR_L(3).r = [0.01; 0.097; 0.016];
RRR_L(3).I = [0.021 0.03 0.382;0.03 0.152 0.11;0.382 0.11 0.651];
RRR_L(3).Jm = 0.0061;
RRR_L(3).B = 0.00429;
RRR_L(3).Tc = [+0.262; -0.661];
RRR_L(3).G = 1.7;three_link = SerialLink(RRR_L, 'name', '3-DOF');

  采用dyn( )函数可以查看动力学参数,如图所示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2 动力学方程中的各项表示

(1)空间惯量矩阵 M ( q ) \boldsymbol{M}(\boldsymbol{q}) M(q)
  机器人的空间惯量是机器人各关节的位姿的函数,在不同机器人位形时具有不同的值。机器人工具箱中可以调用robot.inertia(q)函数获得空间惯量矩阵。
  例如:当3-DOF平面机械臂三个关节角度为30°、45°和60°时,其空间惯量矩阵为:
在这里插入图片描述

(2)科氏力和离心力耦合矩阵 C ( q , q ˙ ) \boldsymbol{C}(\boldsymbol{q},\dot{\boldsymbol{q}}) C(q,q˙)
  科氏力和离心力耦合矩阵是关节位置和速度的函数。机器人工具箱中可以调用robot.coriolis(q, qd)函数获得该耦合矩阵。
  例如:当3-DOF平面机械臂三个关节角度为30°、45°和60°,三个关节速度为10°/s、20°/s和30°/s时,其科氏力和离心力耦合矩阵为:
在这里插入图片描述

(3)重力矩阵 G ( q ) \boldsymbol{G}(\boldsymbol{q}) G(q)
  重力矩阵与机器人的位形有关,是对各关节所受重力的描述,其值不受机器人的运动的影响。机器人工具箱中可以调用robot.gravload(q, grav)函数来获得重力矩阵,其中grav自定义重力加速度向量。
  例如:当3-DOF平面机械臂三个关节角度为30°、45°和60°,重力加速度向量为 y y y轴负向,即grav = [0; -9.8; 0]。重力矩阵为:
在这里插入图片描述

(4)摩擦力矩阵 F f ( q ˙ ) \boldsymbol{F}_f(\dot{\boldsymbol{q}}) Ff(q˙)
  摩擦力矩阵是由各关节的给定摩擦参数数值决定的,大小与各关节的速度有关。机器人工具箱中可以调用robot.friction(qd)函数来获得重力矩阵。
  例如:当3-DOF平面机械臂三个关节速度为10°/s、20°/s和30°/s时,其摩擦力矩阵为:
在这里插入图片描述

三、逆动力学分析

  机器人的逆动力学分析是在给定机器人关节位置、速度和加速度时,计算得到机器人各关节所需要的力和力矩大小。机器人工具箱中可以调用robot.rne(q, qd, qdd, grav)函数来计算逆动力学。其中,q, qd, qdd分别表示机器人关节位置、速度和加速度;grav表示自定义的重力加速度矢量。除此之外,还可以添加参数fext,表示末端执行器受到的外力和力矩 [ F x , F y , F z , τ x , τ y , τ z ] [F_x,\: F_y,\: F_z,\: \tau_x,\: \tau_y,\: \tau_z] [Fx,Fy,Fz,τx,τy,τz]
  例子:让3-DOF平面机械臂按照下图所示的轨迹运动。
在这里插入图片描述

代码:

%% 动力学
% RRR机械臂
clear;
close all;
clc;%               theta(z)   d(z)     a(x)     alpha(x)  
RRR_L(1) = Link([  0       0        1        0    ],'standard');
RRR_L(2) = Link([  0       0      0.8        0    ],'standard');
RRR_L(3) = Link([  0       0      0.6        0    ],'standard');% 连杆1动力学参数
RRR_L(1).m = 4.0;
RRR_L(1).r = [0.12; 0.08; 0.31];
RRR_L(1).I = [0.32 0.01 0.02;0.01 0.12 0.11;0.02 0.11 0.41];
RRR_L(1).Jm = 0.0012;
RRR_L(1).B = 0.00148;
RRR_L(1).Tc = [+0.395, -0.435];
RRR_L(1).G = 1.2;% 连杆2动力学参数
RRR_L(2).m = 15.2;
RRR_L(2).r = [-0.475; 0.097; 0.06];
RRR_L(2).I = [1.21 0.21 0.32;0.21 0.52 0.11;0.32 0.11 0.51];
RRR_L(2).Jm = 0.0048;
RRR_L(2).B = 0.00329;
RRR_L(2).Tc = [+0.462; -0.561];
RRR_L(2).G = 1.4;% 连杆3动力学参数
RRR_L(3).m = 5.6;
RRR_L(3).r = [0.01; 0.097; 0.016];
RRR_L(3).I = [0.921 0.03 0.382;0.03 0.252 0.11;0.382 0.11 1.251];
RRR_L(3).Jm = 0.0061;
RRR_L(3).B = 0.00429;
RRR_L(3).Tc = [+0.262; -0.661];
RRR_L(3).G = 1.7;three_link = SerialLink(RRR_L, 'name', '3-DOF');delta_t = 0.02;
t = 0:delta_t:4;
m = length(t);theta1 = 60*sin(4*pi*t/4);
theta2 = 60*sin(2*pi*t/4);
theta3 = 30*sin(2*pi*t/4);theta1_d = 60*pi*cos(4*pi*t/4);
theta2_d = 30*pi*cos(2*pi*t/4);
theta3_d = 15*pi*cos(2*pi*t/4);theta1_dd = -60*pi*pi*sin(4*pi*t/4);
theta2_dd = -15*pi*pi*sin(2*pi*t/4);
theta3_dd = -7.5*pi*pi*sin(2*pi*t/4);q = [theta1;theta2;theta3]'*pi/180;
qd = [theta1_d;theta2_d;theta3_d]'*pi/180;
qdd = [theta1_dd;theta2_dd;theta3_dd]'*pi/180;% 关节位置、速度、加速度绘图
figure(1)
subplot(3,1,1)
plot(t, q(:,1)*180/pi, 'b')
hold on
plot(t, q(:,2)*180/pi, 'r--')
hold on
plot(t, q(:,3)*180/pi, 'm')
xlabel('time (s)', 'Interpreter', 'latex')
ylabel('$\theta$ (deg)', 'Interpreter', 'latex')
legend('$\theta_1$','$\theta_2$','$\theta_3$', 'Interpreter', 'latex')
set(gca, 'FontName','Times New Roman')subplot(3,1,2)
plot(t, qd(:,1)*180/pi, 'b')
hold on
plot(t, qd(:,2)*180/pi, 'r--')
hold on
plot(t, qd(:,3)*180/pi, 'm')
xlabel('time (s)', 'Interpreter', 'latex')
ylabel('$\dot{\theta}$ (deg)', 'Interpreter', 'latex')
legend('$\dot{\theta_1}$','$\dot{\theta_2}$','$\dot{\theta_3}$', 'Interpreter', 'latex')
set(gca, 'FontName','Times New Roman')subplot(3,1,3)
plot(t, qdd(:,1)*180/pi, 'b')
hold on
plot(t, qdd(:,2)*180/pi, 'r--')
hold on
plot(t, qdd(:,3)*180/pi, 'm')
xlabel('time (s)', 'Interpreter', 'latex')
ylabel('$\ddot{\theta}$ (deg)', 'Interpreter', 'latex')
legend('$\ddot{\theta_1}$','$\ddot{\theta_2}$','$\ddot{\theta_3}$', 'Interpreter', 'latex')
set(gca, 'FontName','Times New Roman')set(gcf, 'color',[1 1 1]);% 运动示意
figure(2)
three_link.plot(q,'trail','b');% 逆动力学
grav = [0; -9.8; 0];
tau = three_link.rne(q, qd, qdd, grav);% 关节驱动力矩
figure(3)
plot(t,tau(:,1), 'b')
hold on
plot(t, tau(:,2), 'r--')
hold on
plot(t, tau(:,3), 'm')
xlabel('time (s)', 'Interpreter', 'latex')
ylabel('$\tau$ (N/m)', 'Interpreter', 'latex')
legend('$\tau_1$','$\tau_2$','$\tau_3$', 'Interpreter', 'latex')
set(gca, 'FontName','Times New Roman')
set(gcf, 'color',[1 1 1]);

运行结果:
在这里插入图片描述
在这里插入图片描述

四、结语

  机器人工具箱还有其他的一些应用,譬如正动力学分析、视觉相关应用等,不过笔者对这些没有接触过,就不误导大家了。
  我是木头人,以上全是个人见解,有问题请大家评论区指出,大家共同进步!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/328913.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Python】图形用户界面设计

1、设计并编写一个窗口程序,该窗口只有一个按钮,当用户单击时可在后台输出hello world. import tkinter as tk def on_button_click():print("hello world") # 创建主窗口 root tk.Tk() root.title("Hello World Button") # 设置窗口大小 root.geometry…

Android手动下载Gradle的使用方法

导入新项目通常会自动下载gradle版本,这种方式很慢而且经常下载失败,按照提示手动下载的gradle应该放在那里,如何使用,本篇文章为你提供一种亲测有效的方法: 在Android Studio打开Setting搜索Gradle找到Gradle的存放目…

每日一练 2024.5.16(补 2024.5.14)

题目&#xff1b; 我们定义 arr 是 山形数组 当且仅当它满足&#xff1a; arr.length > 3存在某个下标 i &#xff08;从 0 开始&#xff09; 满足 0 < i < arr.length - 1 且&#xff1a; arr[0] < arr[1] < ... < arr[i - 1] < arr[i]arr[i] > arr…

【大模型微调】一文掌握7种大模型微调的方法

本篇文章深入分析了大型模型微调的基本理念和多样化技术&#xff0c;细致介绍了LoRA、适配器调整(Adapter Tuning)、前缀调整(Prefix Tuning)等多个微调方法。详细讨论了每一种策略的基本原则、主要优点以及适宜应用场景&#xff0c;使得读者可以依据特定的应用要求和计算资源限…

Vue的学习 —— <vue组件>

目录 前言 正文 一、选项式API与组合式API 二、生命周期函数 1、onBeforeMount() 2、onMounted() 3、onBeforeUpdate() 4、onUpdated() 5、onBeforeUnmount() 6、onUnmounted() 三、组件之间的样式冲突 四、父组件向子组件传递数据 1、定义props 2、静态绑定props…

1709 ssm互联网消费信贷系统myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java ssm互联网消费信贷系统是一套完善的web设计系统&#xff08;系统采用SSM框架进行设计开发&#xff0c;springspringMVCmybatis&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源 代码和数据库&#xff0c;系统主要…

淘宝评论api接口的探索与实践

一、淘宝评论api接口简介 淘宝评论api接口是淘宝开放平台提供的一种数据接口&#xff0c;通过该接口&#xff0c;开发者可以获取淘宝商品的评论信息&#xff0c;包括评论内容、评论评分、评论时间等。此接口为开发者提供了丰富的评论数据&#xff0c;便于进行商品评价分析、营…

在 Django 中获取已渲染的 HTML 文本

在Django中&#xff0c;你可以通过多种方式获取已渲染的HTML文本。这通常取决于你希望在哪个阶段获取HTML文本。下面就是我在实际操作中遇到的问题&#xff0c;并且通过我日夜奋斗终于找到解决方案。 1、问题背景 在 Django 中&#xff0c;您可能需要将已渲染的 HTML 文本存储…

图文并茂:解析Spring Boot Controller返回图片的三种方式

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 图文并茂&#xff1a;解析Spring Boot Controller返回图片的三种方式 前言使用Base64编码返回图片使用byte数组返回图片使用Resource对象返回图片图片格式转换与性能对比 前言 在互联网的世界里&…

C# 结合 JavaScript 对 Web 控件进行数据输入验证

目录 关于数据验证 范例运行环境 验证设计 JavaScript 方法 设计 实现 调用示例 C# 方法 设计 实现 调用示例 小结 关于数据验证 在 Web 应用的录入界面&#xff0c;数据验证是一项重要的实现功能&#xff0c;数据验证是指确认 Web 控件输入或选择的数据&#xff…

宁静致远(“静”)

宁静致远是一个成语&#xff0c;读音为nng jng zh yuǎn&#xff0c;意思是只有心境平稳沉着、专心致志&#xff0c;才能厚积薄发、 有所作为。出自《淮南子:主术训》。 出处 宁静致远张铭篆刻 此句最早出自西汉初年道家刘安的《淮南子:主术训》&#xff0c;蜀汉丞相诸葛亮的…

2025秋招Java还是c++?

一、我的编程经 说说我的编程经历&#xff0c;在C和Java之间我经历了几个阶段&#xff1a; 大学期间&#xff0c;我浅尝辄止地学习了一段时间的Java&#xff0c;但后来放弃了&#xff0c;开始学习C/C。本科毕业后&#xff0c;我选择攻读硕士学位&#xff0c;并一直专注于C的学…

美团小程序mtgsig1.2逆向

声明 本文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;抓包内容、敏感网址、数据接口等均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01;wx a15018601872 本文章未…

汇编--栈和寄存器

栈 栈是一种运算受限的线性表&#xff0c;其限定仅在表尾进行插入和删除操作的线性表&#xff0c;表尾也被叫做栈顶。简单概括就是我们对于元素的操作只能够在栈顶进行&#xff0c;也造就了其先进后出的结构特性。 栈 这种内存空间其实本质上有两种操作&#xff1a;将数据放入…

C语言如何删除表中指定位置的结点?

一、问题 如何删除链表中指定位置的结点&#xff1f; 二、解答 删除链表中指定的结点&#xff0c;就像是排好队的⼩朋友⼿牵着⼿&#xff0c;将其中⼀个⼩朋友从队伍中分出来&#xff0c;只需将这个⼩朋友的双⼿从两边松开。 删除结点有两种情况&#xff1a; &#xff08;1&am…

CRM与SCRM:联系与区别

引言 在当今数字化时代&#xff0c;企业与客户之间的互动变得日益频繁而复杂。为了更好地管理客户关系并提供更个性化的服务&#xff0c;许多企业采用了客户关系管理&#xff08;CRM&#xff09;系统。与此同时&#xff0c;随着社交媒体的普及和社交化互动的增加&#xff0c;社…

【文末附gpt升级方案】探讨当前时机是否适合进入AIGC行业(一)

随着科技的飞速发展&#xff0c;人工智能生成内容&#xff08;AIGC&#xff09;作为新兴的技术领域&#xff0c;正逐步走进公众的视野&#xff0c;并在多个行业展现出巨大的应用潜力。然而&#xff0c;对于创业者、投资者以及希望进入这一领域的专业人士来说&#xff0c;当前时…

传输层协议——TCP协议

目录 一、TCP协议 二、TCP协议格式 三、序号和确认序号 四、窗口大小 五、六个标记位 六、三次握手和四次挥手 七、滑动窗口 八、拥塞控制 九、延迟应答和捎带应答 1、延迟应答 2、捎带应答 十、面向字节流 十一、粘包问题 十二、TCP异常情况 十三、再谈listen函…

小程序|锁定查询功能如何使用?

学生或家长想要实现自己查询完成后&#xff0c;任何人都无法再次查询&#xff0c;老师应该如何设置&#xff1f;易查分的【锁定查询功能】就可实现&#xff0c;下面教大家如何使用吧。 &#x1f4cc;使用教程 &#x1f512;锁定查询功能介绍 ✅学生或家长自主锁定&#xff1a;开…