大工作量LUAD代谢重编程模型多组学(J Transl Med)

目录

1,单细胞早期、晚期和转移性 LUAD 的细胞动力学变化

2,细胞代谢重编程介导的LUAD驱动恶性转移的异质性

3,模型构建 S-MMR评分管线构建

4,S-MMR 模型的预后评估

5, 还开发了S-MMR 评分网络工具

6,S-MMR 评分重塑了 LUAD 中的免疫浸润模式

7,S-MMR评分预测免疫治疗疗效的能力

8,靶点和药物筛选

9,解剖 S-MMR 评分为 3 的恶性细胞

10,泛癌分析

最近的研究越来越多地揭示了代谢重编程与肿瘤进展之间的联系。然而,代谢重编程对肺腺癌 (LUAD) 患者间异质性和预后的具体影响仍需进一步探索。在这里,我们根据恶性和代谢基因集引入了一个细胞层次结构框架,称为恶性和代谢重编程(MMR),以重新分析178,739个单细胞参考图谱。

亮点:大工作量,支持向量机、随机森林以及决策树模型等多机器学习框架(比单独机器学习模型和算法具有更好的稳健性和精确性)。该研究根据 LUAD scRNA-seq 图谱定义了一组与 LUAD 肿瘤发生和细胞代谢重编程相关的基因,命名为“MMR”。采用Cox回归、随机生存森林(RSF)、CoxBoost、支持向量机(SVM)和梯度提升机(GBM)等机器学习方法,明确了MMR与LUAD预后的关系。我们引入了一种创新的集成学习管道,即三阶段 MMR (3 S-MMR),并通过遗传算法进行增强。该框架分别在特征工程和模型开发中使用双训练集,从而降低了严重过拟合的风险。研究涉及了单细胞、空间代谢组学多组学研究


1,单细胞早期、晚期和转移性 LUAD 的细胞动力学变化

在解开LUAD细胞层次结构的初始阶段,我们重新分析了178,739个scRNA-seq细胞,覆盖48个样本,包括Nln、nLung、tLung、PE、mLN和tL/B组织,以及根据经典标记基因对T、B、NK、上皮、巨噬细胞、单核细胞、成纤维细胞、MDC、肥大、血浆、内皮和PDC进行明显分类的细胞。

早期、晚期和转移性 LUAD 的细胞动力学变化。A)样品的细胞分布无显著的批次效应。(B) 来自所有 scRNA-seq 样品的细胞的 t-SNE 图谱,通过细胞类型注释着色。(C) 显示每种细胞类型的代表性标记基因的点图。(D) 每种细胞类型中来自每种来源组织的比例,如图所示。(E) 折线图显示通过 Ro/e 评分估计的每种细胞类型的组织流行率。(F) 分级热图显示来自每个来源组织的上皮细胞的 CNV。正常肺源性上皮细胞用作对照参考。红色:增益;蓝色:损失。(G) 推断 CNV 的 K 均值聚类以获得癌细胞。(H) 显示5个K-means聚类CNV分数差异的小提琴图。(簇1被指定为正常上皮细胞,而其余细胞被归类为恶性细胞。)

2,细胞代谢重编程介导的LUAD驱动恶性转移的异质性

由细胞代谢重编程介导的 LUAD 驱动的恶性转移之间的异质性。A) 正常细胞和恶性细胞之间 GSVA 对每个细胞评分的标志性基因集通路活性的差异。(B)来自每个来源组织的恶性细胞的代谢途径活动。统计上不显著的值(随机排列余P > 0.05)显示为空白。(C) 基于恶性细胞和正常细胞之间差异表达基因的 Wilcoxon 秩和检验结果的百分比差异(Delta 表示细胞百分比)和对数倍数变化。(D) 显示 1290 个 MMR 基因交叉分析的 UpSet 图。(E) 1290 MMR基因的DO富集分析。(女、女)小提琴图 (F) 和气泡图 (G) 显示使用 AUCell、UCell、singscore、ssGSEA、AddModulescore 和 Scoreing(其他算法的分数之和)评分的每种细胞类型的 MMR 基因集的富集分数。(H) 使用 AUCell、UCell、singscore、ssGSEA、AddModulescore 和 Scoring 评分显示各来源组织的 MMR 基因集富集分数动态变化的小提琴图

3,模型构建 S-MMR评分管线构建

A) 3 S-MMR 评分的工作流程。(B) 25个LASSO驱动基因对的基因对信息和危害比。(C) 47名基础学习者的C指数和标准

4,S-MMR 模型的预后评估

5, 还开发了S-MMR 评分网络工具

6,S-MMR 评分重塑了 LUAD 中的免疫浸润模式

3 S-MMR 评分重塑了 LUAD 中的免疫浸润模式。A) 高 3 S-MMR 评分组和低 3 S-MMR 评分组之间癌症免疫周期各个步骤的差异。(B) 3 S-MMR 评分 (riskScore) 与基质、免疫和 ESTIMATE 评分之间的相关性。(C) 3 S-MMR 评分与癌症免疫周期步骤之间的相关性(左)。3 个 S-MMR 评分与已发表的免疫细胞特征的富集评分之间的相关性(右)。(D) 3 S-MMR 评分与 6 种 TIIC(CD8 + T 细胞、CD4 + T 细胞、NK 细胞、巨噬细胞、Th1 细胞和树突状细胞)浸润水平之间的相关性,采用 6 种独立算法计算。(E) 表示高 3 和低 3 S-MMR 评分组之间病理 HE 染色变化的图像(TCGA 数据库)。(F)从左到右:mRNA表达(中位归一化表达水平);表达与甲基化(基因表达与 DNA 甲基化 β 值相关);扩增频率(在特定亚型中扩增 IM 的样本分数与所有样品中的扩增分数之间的差异);以及高 3 和低 3 S-MMR 评分组对 75 个 IM 基因的缺失频率(作为扩增)。缩写:*P < 0.05;**P < 0.01;P < 0.001。

7,S-MMR评分预测免疫治疗疗效的能力

S-MMR 评分预测免疫治疗效果的能力。A-F)TIDE (A)、功能障碍 (B)、排除 (C)、CD8 (D) MDSC (E) 和 Merck18 (F) 评分的小提琴图。(G) 子图算法预测高低 3 个 S-MMR 评分组对 CTLA4 和 PD-1 抑制剂的反应。(H) 高低 3 S-MMR 评分组患者之间免疫检查点曲线的相对表达水平的箱线图。(I-N)GSE126044 (I-J)、GSE35640 (K-L) 和 GSE78220 (M-N) 队列中免疫治疗反应者和非反应者之间 3 个 S-MMR 评分的差异。(O-P)T-SNE 降低映射了 SD 和 PR 患者 (O) 的细胞分布,以及 GSE207422 数据集中 3 个 S-MMR 评分 (P) 的分布。(Q) GSE207422数据集中 SD 和 PR 患者之间 3 个 S-MMR 评分的小提琴图。(R) 通过 R 估计高低 3 个 S-MMR 组的组织偏好O/E在GSE207422数据集中。(S-T)T-SNE 降低映射了 SD 和 PR 患者 (S) 细胞的分布,以及 GSE145281 数据集中 3 个 S-MMR 评分 (T) 的分布。(U) GSE145281数据集中 SD 和 PR 患者之间 3 个 S-MMR 评分的小提琴图。(V) 高低 3 个 S-MMR 组的组织偏好通过 R 估计O/E在GSE145281数据集中。缩写:*P < 0.05;**P < 0.01;P < 0.001

8,靶点和药物筛选

首先,我们进行了 Spearman 相关性分析,以探索 TCGA-LUAD 队列中 3 个 S-MMR 评分与潜在药物靶点表达水平之间的关联。由此,我们确定了一组与评分呈正相关的共享基因,将这些基因指定为 3 S-MMR 评分的相关靶标。随后,通过使用肺癌细胞系对 CERES 评分和 3 S-MMR 评分进行 Spearman 相关性分析,我们继续确定 54 个依赖于不良预后的靶点。

9,解剖 S-MMR 评分为 3 的恶性细胞

解剖 S-MMR 评分高 3 的恶性细胞。A)Monocle2推断的恶性细胞的发展轨迹。3 S-MMR 评分高的恶性细胞主要位于分化根部,3 S-MMR 评分低的恶性细胞主要位于中点和终点状态。(B)恶性细胞中3个S-MMR评分相关基因沿假时间的热图。(C) 热图显示了高 3 S-MMR 评分恶性细胞和低 3 S-MMR 评分恶性细胞之间不同 TFs 激活的热图。(D、E)TFs 在恶性细胞高 (D) 和低 3 S-MMR (E) 评分之间的最高活性。RSS 表示调节子特异性评分。(女、女)所有细胞类型的细胞聊天分析。显示了相互作用的数量和相互作用强度。(H,I)显示 SPP1 信号通路推断的细胞间通信网络的分层图。(J) HE染色显示stRNA样品的组织学不同区域。黄色:癌症区域。(K) 3 S-MMR评分强度的空间图。(L)利用RCTD算法识别空间图中不同细胞类型的分布。

10,泛癌分析

A) 33 种癌症类型中 3 个 S-MMR 评分的 Cox 回归分析。红色表示 P < 0.05 显著性结果。(B) 个别癌症类型的平均 3 S-MMR 评分。组织类型、癌症类型和平均 3 S-MMR 评分从内圈到外圈显示。(C-N)在 12 种癌症中,3 个 S-MMR 评分的 Kaplan-Meier 生存曲线显著(对数秩检验)

参考文献:Architecting the metabolic reprogramming survival risk framework in LUAD through single-cell landscape analysis: three-stage ensemble learning with genetic algorithm optimization

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/331397.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从零开始搭建Springboot项目脚手架4:保存操作日志

目的&#xff1a;通过AOP切面&#xff0c;统一记录接口的访问日志 1、加maven依赖 2、 增加日志类RequestLog 3、 配置AOP切面&#xff0c;把请求前的request、返回的response一起记录 package com.template.common.config;import cn.hutool.core.util.ArrayUtil; import cn.hu…

面试八股之JVM篇3.6——垃圾回收——强引用、弱引用、虚引用、软引用

&#x1f308;hello&#xff0c;你好鸭&#xff0c;我是Ethan&#xff0c;一名不断学习的码农&#xff0c;很高兴你能来阅读。 ✔️目前博客主要更新Java系列、项目案例、计算机必学四件套等。 &#x1f3c3;人生之义&#xff0c;在于追求&#xff0c;不在成败&#xff0c;勤通…

【机器学习系列】使用高斯贝叶斯模型进行数据分类的完整流程

目录 一、导入数据 二、选择特征 三、十折交叉验证 四、划分训练集和测试集 五、训练高斯贝叶斯模型 六、预测测试集 七、查看训练集和测试集上的分数 八、查看混合矩阵 九、输出评估指标 一、导入数据 # 根据商户数据预测其是否续约案例 import pandas #读取数据到 da…

YOLOv10 论文学习

论文链接&#xff1a;https://arxiv.org/pdf/2405.14458 代码链接&#xff1a;https://github.com/THU-MIG/yolov10 解决了什么问题&#xff1f; 实时目标检测是计算机视觉领域的研究焦点&#xff0c;目的是以较低的延迟准确地预测图像中各物体的类别和坐标。它广泛应用于自动…

结构体(位段)内存分配

结构体由多个数据类型的成员组成。那编译器分配的内存是不是所有成员的字节数总和呢&#xff1f; 首先&#xff0c;stu的内存大小并不为29个字节&#xff0c;即证明结构体内存不是所有成员的字节数和。   其次&#xff0c;stu成员中sex的内存位置不在21&#xff0c;即可推测…

CS 下载安装详解

目录 CS简介&#xff1a; CS下载地址&#xff1a; CS的安装&#xff1a; CS简介&#xff1a; CS为目前渗透中常用的一款工具&#xff0c;它的强大在于控制windows木马&#xff0c;CS主要控制windows木马。 CS下载地址&#xff1a; 链接&#xff1a;https://pan.baidu.com/…

【Linux】-Zookeeper安装部署[17]

简介 apache ZooKeeper是一个分布式的&#xff0c;开放源码的分布式应用程序协调服务&#xff0c;是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件&#xff0c;提供的功能包括&#xff1a;配置维护、域名服务、分布式同步、组服务等。 除了为Hadoop和H…

【设计模式】JAVA Design Patterns——Bridge(桥接模式)

&#x1f50d;目的 将抽象与其实现分离&#xff0c;以便二者可以独立变化。 &#x1f50d;解释 真实世界例子 考虑一下你拥有一种具有不同附魔的武器&#xff0c;并且应该允许将具有不同附魔的不同武器混合使用。 你会怎么做&#xff1f; 为每个附魔创建每种武器的多个副本&…

【论文阅读】 YOLOv10: Real-Time End-to-End Object Detection

文章目录 AbstractIntroductionRelated WorkMethodologyConsistent Dual Assignments for NMS-free Training &#xff08;无NMS训练的一致性双重任务分配&#xff09;Holistic Efficiency-Accuracy Driven Model Design &#xff08;效率-精度驱动的整体模型设计&#xff09; …

huggingface 笔记:查看GPU占用情况

0 准备部分 0.1 创建虚拟数据 import numpy as npfrom datasets import Datasetseq_len, dataset_size 512, 512 dummy_data {"input_ids": np.random.randint(100, 30000, (dataset_size, seq_len)),"labels": np.random.randint(0, 1, (dataset_size…

C++与Android处理16进制大端/小端数据实例(二百七十六)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

民国漫画杂志《时代漫画》第14期.PDF

时代漫画14.PDF: https://url03.ctfile.com/f/1779803-1247458399-6732ac?p9586 (访问密码: 9586) 《时代漫画》的杂志在1934年诞生了&#xff0c;截止1937年6月战争来临被迫停刊共发行了39期。 ps:资源来源网络&#xff01;

OWASP top10--SQL注入(一)

SQL注入式攻击技术&#xff0c;一般针对基于Web平台的应用程序.造成SQL注入攻击漏洞的原因&#xff0c;是由于程序员在编写Web程序时&#xff0c;没有对浏览器端提交的参数进行严格的过滤和判断。用户可以修改构造参数&#xff0c;提交SQL查询语句&#xff0c;并传递至服务器端…

基本IO接口

引入 基本输入接口 示例1 示例2&#xff1a;有数据保持能力的外设 #RD端由in指令控制&#xff1a;将数据由端口传输到CPU内存中 #CS244信号由译码电路实现 示例3&#xff1a; a)图中由于输出端口6有连接到端口1&#xff0c;当开关与端点1闭合时期间&#xff0c;仍能维持3端口…

使用DataGrip连接Elasticsearch

使用DataGrip连接Elasticsearch 前言&#xff0c;公司需要使用ES来做数据的查询&#xff0c;我安装完ES&#xff0c;安装完Kibana的时候&#xff0c;想先开始尝试一下&#xff0c;插入查询数据能否可用&#xff0c;但是上次使用ES是好久前了&#xff0c;增删改查的请求根本记不…

欧拉函数、快速幂、扩展欧几里得算法、中国剩余定理和高斯消元

欧拉函数 给定 n 个正整数 ai&#xff0c;请你求出每个数的欧拉函数。 欧拉函数的定义1∼N 中与 N 互质的数的个数被称为欧拉函数&#xff0c;记为 ϕ(N)。 若在算数基本定理中&#xff0c;Np1a11p2a2…pmm&#xff0c;则&#xff1a;ϕ(N) Np1−1/p1p2−1/p2…pm−1/pm 输…

javas-core VS java-object-diff

对照工具选择 javas-core 和 java-object-diff ,对比demo https://github.com/kofgame/objectdiff-vs-javers&#xff0c;都为同源对比&#xff0c;都支持嵌套对象。 使用JMH测试方法进行性能测试&#xff0c;使用题库的QuestionResponseVO对象来进行对照对比&#xff0c;进行…

mac上简单实现一个java调用C接口的JNI

目录 安装JDK及配置环境变量写Java代码生成头文件实现本地方法编译本地代码运行 Java 程序总结步骤 安装JDK及配置环境变量 参考&#xff1a;MAC系统安装JDK1.8及环境变量配置 写Java代码 // 文件名&#xff1a;Calculator.java public class Calculator {// 声明本地方法pu…

如何禁止U盘拷贝文件|禁止U盘使用的软件有哪些

禁止U盘拷贝文件的方法有很多&#xff0c;比如使用注册表、组策略编辑器等&#xff0c;但这些方法都适合个人&#xff0c;不适合企业&#xff0c;因为企业需要对下属多台电脑进行远程管控&#xff0c;需要方便、省时、省力的方法。目前来说&#xff0c;最好的方法就是使用第三方…

嵌入式单片机笔试题

DC-DC 和 LDO两者有何区别&#xff1f; DC-DC转换器&#xff08;直流-直流转换器&#xff09;和LDO&#xff08;低压差线性稳压器&#xff09;都是用于电源管理的设备&#xff0c;但它们在原理和特性上有一些显著的区别&#xff1a; 原理&#xff1a; DC-DC转换器通过改变输…