【C++】详解AVL树——平衡二叉搜索树

个人主页:东洛的克莱斯韦克-CSDN博客

祝福语:愿你拥抱自由的风

目录

二叉搜索树

AVL树概述

平衡因子

旋转情况分类

左单旋

右单旋

左右双旋

右左双旋

AVL树节点设计

AVL树设计

详解单旋

左单旋

右单旋

详解双旋

左右双旋

平衡因子情况如下

右左双旋

平衡因子情况如下


二叉搜索树

【C++】详解二叉搜索树-CSDN博客

AVL树概述

平衡树:左子树的高度等于右子树的高度

不平衡树:左子树的高度不等于等于右子树的高度

二叉搜索树很难是一颗平衡树。

对二叉树进行插入和删除的操作,或插入大量的数据不够随机,都会是使二叉搜索树不够平衡。

极端情况下,二叉树会退化成类似链表的结构,那么二叉搜索树查询数据的效率荡然无存。

在二叉树的基础上加入平衡的概念就是平衡二叉搜索树,也叫AVL树

AVL树也不是一颗绝对的平衡树,AVL树的平衡是相对的,它允许左子树和右子树的高度为 1 ,但不能超过 1

平衡是相对的很好理解,因为一个父亲节点最多只能有两个孩子节点,而数据又是一个一个插入的,所以一定会出现左子树和右子树高度差为 1 的情况。

B树可达到绝对平衡,因为B树是多叉结构——一个父亲节点有多个孩子节点

如果左子树和右子树的高度差为 2 就视为打破平衡

如果打破平衡,就需要通过旋转这一操作让左右子树的高度差小于等于 1 。

AVL树是保持一种相对平衡的状态,而不是绝对平衡。那么AVL树搜索数据的效率只能是接近O(logN)

AVL树只是保证了搜索效率的下限,而不是提高了上限

平衡因子

平衡因子这一概念并不是AVL树所必备的——从代码实现的角度来说,如果不加入平衡因子的概念理解起来会比较抽象。

平衡因子:让每个节点存一个整型,该整形值的大小等于右子树的高度减左子树的高度

平衡因子等于 0 左右子树平衡

平衡因子等于 1左右子树相对平衡,右树偏高

平衡因子等于 -1 :左右子树相对平衡,左树树偏高

平衡因子等于 2 -2左右子树不平衡

平衡因子的更新:

插入父亲节点的右边平衡因子加加,插入父亲节点的右边平衡因子减减

父亲节点更新后的平衡因子等于 1 或 -1 ,需要不断往上(溯源)更新,直到父亲节点的平衡因子为 0 或 更新至整棵树的根节点就停止更新

如果父亲节点的平衡因子为 2 或 -2 时,需要对这棵子树旋转,旋转后更新平衡因子

示例

旋转情况分类

旋转分为:

左单旋 右单旋  左右双旋  右左双旋

左单旋

:新节点插入较高右子树的右侧

具象图:

抽象图:

那么左单旋是怎么旋的呢?核心步骤为:

设父亲节点为:fathernode 孩子节点为:cur

cur的左孩子成为fathernode的右孩子,

再让fathernode成为cur的左孩子。

如下示意图

右单旋

:新节点插入较高左子树的左侧

具象图:

抽象图:

那么右单旋是怎么旋的呢?核心步骤为:

设父亲节点为:fathernode 孩子节点为:cur

cur的右孩子成为fathernode的左孩子,

再让fathernode成为cur的右孩子

如下示意图:

左右双旋

:新节点插入在较高左子树的右侧——先左单旋再右单旋

左右双旋的核心步骤为:

设父亲节点为:fathernode 

父亲的左孩子节点为:fathernodeL

父亲的左孩子节点的右孩子节点的为fathernodeLR

先让fathernodeL左单旋,再让fathernodeLR进行右单旋

这里小编直接上抽象图:

右左双旋

:新节点插入再较高右子树的左侧——先右单旋再左单旋

设父亲节点为:fathernode 

父亲的 右孩子节点为:fathernodeR

父亲的右孩子节点的左孩子节点的为fathernodeRL

先对fathernodeR进行右单旋,再对fathernode进行左单旋。

示意图:

AVL树节点设计

【C++】详解C++的模板-CSDN博客

AVL树的节点需要三个指针,分别指向左孩子节点,右孩子节点,父亲节点。指向父亲节点的指针是为了能溯源更新平衡因子。

需要一个整型存储平衡因子,平衡因子在构造函数的初始化列表中初始化为 0,因为新节点左右孩子都为空。

template <class K>
class AVLTreeNode
{
public:AVLTreeNode(const K& key) //构造函数:_key(key), _left(nullptr), _right(nullptr), _FatherNode(nullptr), _bf(0){}K _key; //键值   AVLTreeNode<K>* _left;//左孩子AVLTreeNode<K>* _right;//右孩子AVLTreeNode<K>* _FatherNode;//父亲  int _bf;//平衡因子};

AVL树设计

template <class K>
class AVLTree
{typedef AVLTreeNode<K> node; node* _root;public:AVLTree()  //构造函数,初始化为空树:_root(nullptr){}bool Insert(const K& key)//插入元素{
//if (nullptr == _root) //是否是空树{_root = new node(key);  return true;}
//node* cur = _root;node* fathernode = nullptr;while (cur)  //查找插入的位置,如果树中已经有要插入的值,则插入失败,{if (cur->_key < key){fathernode = cur;cur = cur->_right;}else if (cur->_key > key){fathernode = cur;cur = cur->_left;}else{return false;}}cur = new node(key); //新插入节点 if (fathernode->_key < cur->_key) //判断新节点应该是左孩子还是右孩子{fathernode->_right = cur;cur->_FatherNode = fathernode;}else{fathernode->_left = cur;cur->_FatherNode = fathernode;}//while (fathernode)//更新平衡因子{if (cur == fathernode->_left){fathernode->_bf--;}else  if (cur == fathernode->_right){fathernode->_bf++;}//if (fathernode->_bf == 0){// 更新结束break;}else if (fathernode->_bf == 1 || fathernode->_bf == -1){// 继续往上更新cur = fathernode;fathernode = fathernode->_FatherNode;}else if (fathernode->_bf == 2 || fathernode->_bf == -2){// 子树不平衡了,需要旋转if (fathernode->_bf == 2 && cur->_bf == 1){RevolveLeft(fathernode);//左单旋}else if (fathernode->_bf == -2 && cur->_bf == -1){RevolveRight(fathernode);//右单旋}else if (fathernode->_bf == 2 && cur->_bf == -1){RevolveRightLeft(fathernode); //右左双旋   }else if (fathernode->_bf == -2 && cur->_bf == 1){RevolveLeftRight(fathernode);//左右双旋}else{assert(false);   //平衡因子出问题了}break;}}return true;}}

下面通过代码的细节来深入理解旋转

详解单旋

左单旋

完整代码如下

void RevolveLeft(node *& fathernode)//左单旋      
{node* cur = fathernode->_right; //父亲节点的右孩子fathernode->_right = cur->_left; //更改指向关系if (cur->_left != nullptr) //特殊情况cur->_left->_FatherNode = fathernode;//更改指向关系cur->_FatherNode = fathernode->_FatherNode;//更改指向关系if (fathernode->_FatherNode != nullptr) //为空是特殊情况,{if (fathernode->_FatherNode->_right == fathernode){fathernode->_FatherNode->_right = cur;//更改指向关系}else{fathernode->_FatherNode->_left = cur;//更改指向关系}}cur->_left = fathernode;//更改指向关系fathernode->_FatherNode = cur;//更改指向关系fathernode->_bf = 0; //更新平衡因子cur->_bf = 0;}

处理指向关系时,一定不要忘了更改父亲的指向关系

经过左单旋之后,父亲节点和右孩子节点的平衡因子都为 0 ,可参考上文图示。

特殊情况如下,如果不处理特殊情况,程序很容易崩溃

右单旋

void RevolveRight(node *& fathernode) //右单旋
{node* cur = fathernode->_left; //父亲节点的左节点fathernode->_left = cur->_right;//更新指向关系if (cur->_right != nullptr) //特殊情况cur->_right->_FatherNode = fathernode;//更新指向关系cur->_FatherNode = fathernode->_FatherNode;//更新指向关系if (fathernode->_FatherNode != nullptr)//特殊情况{if (fathernode->_FatherNode->_right == fathernode){fathernode->_FatherNode->_right = cur;//更新指向关系}else{fathernode->_FatherNode->_left = cur;//更新指向关系}}cur->_right = fathernode;//更新指向关系fathernode->_FatherNode = cur;//更新指向关系fathernode->_bf = 0;//更新平衡因子cur->_bf = 0;
}

详解双旋

左右双旋

左右双旋只需复用左单旋和右单旋即可,但平衡因子的更新却比较麻烦

完整代码如下

	void RevolveLeftRight(node *& fathernode)//左右双旋    {node* fathernodeL = fathernode->_left; //父亲节点的左孩子节点node* fathernodeLR = fathernodeL->_right;//父亲节点的左孩子节点的右孩子节点int bf = fathernodeLR->_bf; //保存平衡因子,实际是为了判断是插入了fathernodeLR左边还是右边还是fathernodeLR本身插入RevolveLeft(fathernodeL);RevolveRight(fathernode);//更新平衡因子if (bf == 0){fathernode->_bf = 0;fathernodeL->_bf = 0;fathernodeLR->_bf = 0;}else if (bf == -1){fathernode->_bf = 1;fathernodeL->_bf = 0;fathernodeLR->_bf = 0;}else if (bf == 1){fathernodeL->_bf = -1;fathernode = 0;fathernodeLR = 0;}else{assert(false);}}

平衡因子情况如下

右左双旋

完整代码如下

	void RevolveRightLeft(node *& fathernode) //右左双旋 {node* fathernodeR = fathernode->_right; node* fathernodeRL = fathernodeR->_left;int bf = fathernodeRL->_bf;RevolveRight(fathernodeR);RevolveLeft(fathernode);if (bf == 0){fathernode->_bf = 0;fathernodeR->_bf = 0;fathernodeRL->_bf = 0;}else if (bf == 1){fathernode->_bf = -1;fathernodeR->_bf = 0;fathernodeRL->_bf = 0;}else if (bf == -1){fathernodeR->_bf = 1;fathernode->_bf = 0;fathernodeRL->_bf = 0;}else{assert(false); }}

平衡因子情况如下

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/331463.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

默认路由实现两个网段互通实验

默认路由实现两个网段互通实验 **默认路由&#xff1a;**是一种特殊的静态路由&#xff0c;当路由表中与数据包目的地址没有匹配的表项时&#xff0c;数据包将根据默认路由条目进行转发。默认路由在某些时候是非常有效的&#xff0c;例如在末梢网络中&#xff0c;默认路由可以…

ant design pro 6.0搭建教程

一、搭建 环境&#xff1a; Node.js 18.16.1 ant design pro 6.0 注意&#xff1a;选择umi3时&#xff0c;使用node.js 18版本的会报错&#xff0c;可以实践一下&#xff0c;这里就不再进行实践了。 umi3需要版本是低于node.js 18的 node下载地址&#xff1a; https://nodejs.…

韭菜的自我总结

韭菜的自我总结 股市技术面量价关系左侧右侧右侧技术左侧技术洗盘 韭菜的自我修养虚拟货币的启示韭菜的买入时机韭菜的心理压力成为优秀玩家的关键 股市技术面 技术面分析可以作为买卖时机判定的工具&#xff0c;但是投资还是需要基本面的分析作为支撑。也就是基本面选股&…

【C++】C++的心脏:深入理解内存管理中的 new 和 delete

欢迎来到CILMY23的博客 &#x1f3c6;本篇主题为&#xff1a; C的心脏&#xff1a;深入理解内存管理中的 new 和 delete &#x1f3c6;个人主页&#xff1a;CILMY23-CSDN博客 &#x1f3c6;系列专栏&#xff1a;Python | C | C语言 | 数据结构与算法 | 贪心算法 | Linux &a…

【C++进阶】AVL树

0.前言 前面我们已经学习过二叉搜索树了&#xff0c;但如果我们是用二叉搜索树来封装map和set等关联式容器是有缺陷的&#xff0c;很可能会退化为单分支的情况&#xff0c;那样效率就极低了&#xff0c;那么有没有方法来弥补二叉搜索树的缺陷呢&#xff1f; 那么AVL树就出现了&…

【开源】多语言大型语言模型的革新:百亿参数模型超越千亿参数性能

大型人工智能模型&#xff0c;尤其是那些拥有千亿参数的模型&#xff0c;因其出色的商业应用表现而受到市场的青睐。但是&#xff0c;直接通过API使用这些模型可能会带来数据泄露的风险&#xff0c;尤其是当模型提供商如OpenAI等可能涉及数据隐私问题时。私有部署虽然是一个解决…

5.18 TCP机械臂模拟

#include <netinet/tcp.h>//包含TCP选项的头文件 #include <arpa/inet.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <linux/input.h>//读取输入事件 #include <sys/types.h> #include <sys/stat.h&…

LeetCode700二叉搜索树中的搜索

题目描述 给定二叉搜索树&#xff08;BST&#xff09;的根节点 root 和一个整数值 val。你需要在 BST 中找到节点值等于 val 的节点。 返回以该节点为根的子树。 如果节点不存在&#xff0c;则返回 null 。 解析 最基本的二叉搜索树的应用&#xff0c;递归或者while循环都可以…

【FPGA】VGA显示文字、彩条、图片——基于DE2-115

文章目录 前言一、VGA概述1.1 简述1.2 管脚定义1.3 VGA显示原理1.4 VGA时序标准1.5 VGA 显示模式及相关参数 二、VGA显示自定义的汉字字符2.1 点阵汉字生成2.2 生成BMP文件2.3 生成txt文件2.4 实现效果 三、VGA显示条纹3.1 实现流程3.2 实现效果 四、VGA输出一幅彩色图像4.1 bm…

算法金 | Dask,一个超强的 python 库

本文来源公众号“算法金”&#xff0c;仅用于学术分享&#xff0c;侵权删&#xff0c;干货满满。 原文链接&#xff1a;Dask&#xff0c;一个超强的 python 库 1 Dask 概览 在数据科学和大数据处理的领域&#xff0c;高效处理海量数据一直是一项挑战。 为了应对这一挑战&am…

2024年5月26日 十二生肖 今日运势

小运播报&#xff1a;2024年5月26日&#xff0c;星期日&#xff0c;农历四月十九 &#xff08;甲辰年己巳月庚寅日&#xff09;&#xff0c;法定节假日。 红榜生肖&#xff1a;马、猪、狗 需要注意&#xff1a;牛、蛇、猴 喜神方位&#xff1a;西北方 财神方位&#xff1a;…

多线程事务

一、业务场景 我们在工作中经常会到往数据库里插入大量数据的工作&#xff0c;但是既需要保证数据的一致性&#xff0c;又要保证程序执行的效率。因此需要在多线程中使用事务&#xff0c;这样既可以保证数据的一致性&#xff0c;又能保证程序的执行效率。但是spring自带的Trans…

开关电源AC-DC(15W 3-18V可调)

简介: 该模块使用PI的TNY268PN电源芯片制作的开关电源,实现最大功率15W 3-18V可调输出(更改反馈电阻)隔离式反激电源; 简介:该模块使用PI的TNY268PN电源芯片制作的开关电源,实现最大功率15W 3-18V可调输出(更改反馈电阻,现电路图输出5V)隔离式反激电源; 一、产品简…

论文阅读--CLIPasso

让计算机把真实图片抽象成简笔画&#xff0c;这个任务很有挑战性&#xff0c;需要模型捕获最本质的特征 以往的工作是找了素描的数据集&#xff0c;而且抽象程度不够高&#xff0c;笔画是固定好的&#xff0c;素描对象的种类不多&#xff0c;使得最后模型的效果十分受限 之所以…

云计算和大数据处理

文章目录 1.云计算基础知识1.1 基本概念1.2 云计算分类 2.大数据处理基础知识2.1 基础知识2.3 大数据处理技术 1.云计算基础知识 1.1 基本概念 云计算是一种提供资源的网络&#xff0c;使用者可以随时获取“云”上的资源&#xff0c;按需求量使用&#xff0c;并且可以看成是无…

面试八股之JVM篇3.5——垃圾回收——G1垃圾回收器

&#x1f308;hello&#xff0c;你好鸭&#xff0c;我是Ethan&#xff0c;一名不断学习的码农&#xff0c;很高兴你能来阅读。 ✔️目前博客主要更新Java系列、项目案例、计算机必学四件套等。 &#x1f3c3;人生之义&#xff0c;在于追求&#xff0c;不在成败&#xff0c;勤通…

优先级队列(堆)的实现

1.什么是优先级队列 队列是一种先进先出(FIFO)的数据结构&#xff0c;但有些情况下&#xff0c;操作的数据可能带有优先级&#xff0c;一般出队 列时&#xff0c;可能需要优先级高的元素先出队列&#xff0c;该中场景下&#xff0c;使用队列显然不合适&#xff0c;比如&#x…

Python线程

Python线程 1. 进程和线程 先来了解下进程和线程。 类比&#xff1a; 一个工厂&#xff0c;至少有一个车间&#xff0c;一个车间中至少有一个工人&#xff0c;最终是工人在工作。 一个程序&#xff0c;至少有一个进程&#xff0c;一个进程中至少有一个线程&#xff0c;最终…

不靠后端,前端也能搞定接口!

嘿&#xff0c;前端开发达人们&#xff01;有个超酷的消息要告诉你们&#xff1a;MemFire Cloud来袭啦&#xff01;这个神奇的东东让你们不用依赖后端小伙伴们&#xff0c;也能妥妥地搞定 API 接口。是不是觉得有点不可思议&#xff1f;但是事实就是这样&#xff0c;让我们一起…

141.字符串:重复的字符串(力扣)

题目描述 代码解决 class Solution { public:// 计算字符串s的next数组&#xff0c;用于KMP算法void getNext(int *next, const string& s){int j 0; // j是前缀的长度next[0] 0; // 初始化next数组&#xff0c;第一个字符的next值为0for (int i 1; i < s.size(); …