光速入门python的OpenCV

前言

欢迎来到我的博客

个人主页:北岭敲键盘的荒漠猫-CSDN博客

 本文整理python的OpenCV模块的关键知识点

争取用最短的时间入门OpenCV

并且做到笔记功能直接复制使用

OpenCV简介

不浪费时间的介绍:

就是类似于ps操作图片。

至于为什么不直接用ps,因为只有程序能完成ps的操作,这样才能完全自动化2小时不间断的执行一些程序,总不能执行到一定地方要等你人为的在ps中做好图片再来执行程序吧。

功能点罗列:

画图,图片高斯模糊,腐蚀膨胀等处理,开启摄像头。

最基本的使用

导入模块:import cv2
方法作用
cv2.getVersionString()返回OpenCV的版本
cv2.imread(文件地址,图片灰彩类型)

读取文件,用于实例化对象

灰彩类型:(可以不写)

cv2.IMREAD_COLOR读入彩色图像cv2.IMREAD_GRAYSCALE读入灰色图像

对象.shape返回图片的大小(像素)
cv2.imshow(窗口名,图片对象)返回个窗口用于展示这个图片
cv2.waitKey(自动关闭时间)

窗口不自动关闭,知道按下任意键或者到规定时间(时间为微秒)

返回他按得键的代号数字

到时间返回-1

cv2.imwrite(保存路径和文件名,保存的图片)保存编辑的图片

注意:

这个库不支持任何中文!!!!!

不管是图片文件命名还是窗口等

一律别用中文!!!!!!!

(至少我的版本不支持任何中文)

案例演示:

import cv2#导入库
print(cv2.getVersionString())#返回版本号
image=cv2.imread("konglong.jpg")#导入图片,实例化
print(image.shape)#返回图片的大小和通道cv2.imshow("阿萨德",image)#展示图片
cv2.waitKey(1000)#设置暂停
cv2.imwrite("okok.jpg",image)#保存图片

结果:

打印信息

保存okok图片

展示图片(代码中用中文做窗口所以会乱码)

 视频的打开方式

我们视频有两种:摄像头,视频文件

用到的函数:

读取视频或摄像头:cv2.VideoCapture(视频或者摄像头的指针)
返回视频读取的照片:cap.read()

开启摄像头

思路:原理就是对这摄像头一遍遍截图。然后我们不断的刷新显示的图片。

代码如下:

import cv2#导入库
cap=cv2.VideoCapture(0)#读取摄像头
while True:#循环valu,video=cap.read()#读取摄像头内容show=cv2.imshow("video",video)#展示摄像头key=cv2.waitKey(1)#设置等待0.001秒刷新一次print(key)if key!=-1:#如果不是到时间刷新的视频就退出视频break

结果如下:

 按下别的键就关闭了。(字母有时候不行,数字或者特殊按键相对靠谱点)

视频打开方式

代码:

import cv2#导入库
cap=cv2.VideoCapture("bingdu.mp4")
while True:valu,video=cap.read()show=cv2.imshow("video",video)key=cv2.waitKey(1)print(key)if key!=-1:break

基本一样不截图了

灰度图获取与处理

介绍:OpenCV储存图片实际上是储存三原色的三张图片,最后整合在一起。采用bgr图像。

灰度加权平均:

cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)

展示隔色彩图像:

cv2.imshow("blue",image[:,:,0])
cv2.imshow("green",image[:,:,1])
cv2.imshow("red",image[:,:,2])

用法演示:(图片太大不展示效果了)

import cv2
image=cv2.imread("konglong.jpg")
cv2.imshow("blue",image[:,:,0])
cv2.imshow("green",image[:,:,1])
cv2.imshow("red",image[:,:,2])
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
cv2.imshow("gray",gray)
cv2.waitKey()

裁剪图像

crop=image[y轴开始裁剪位置:结束位置,x轴开始裁剪位置:结束位置]

水平为x,垂直为y

案例演示:

import cv2
image=cv2.imread("konglong.jpg")
print(image.shape)
y,h,x,w=100,300,100,600
crop=image[y:h,x:w]
cv2.imshow("crop",crop)
cv2.waitKey()

图形绘制

可用于标记识别的物品

(注意,所有的粗细参数输入负数后就是填充图像)

绘制直线

cv2.line(图片, 起点坐标, 终点坐标, 颜色, 粗细)

案例演示

import cv2
image=cv2.imread("okok.jpg")
cv2.line(image,(0,0),(700,600),(255,45,65),4)
cv2.imshow("image",image)
cv2.waitKey()

效果演示:

绘制方形

cv2.rectangle(图片, 起点坐标, 终点坐标, 颜色, 粗细)

案例演示

import cv2
image=cv2.imread("okok.jpg")
cv2.rectangle(image,(309,310),(344,352),(255,45,65),4)
cv2.imshow("image",image)
cv2.waitKey()

绘制圆形

cv2.circle(image,原点坐标,半径,颜色,粗细)

案例演示:

import cv2
image=cv2.imread("okok.jpg")
cv2.circle(image,(329,329),30,(255,45,65),4)
cv2.imshow("image",image)
cv2.waitKey()

 椭圆绘制

cv2.ellipse(图片, 中心点坐标, 横纵轴长度(元组), 旋转角度, 起始角度, 结束角度, 颜色, 粗细)

案例演示:

import cv2
image=cv2.imread("okok.jpg")
cv2.ellipse(image, (256, 256), (100, 50), 60, 0, 360, (0, 255, 0), -1)
cv2.imshow("image",image)
cv2.waitKey()

绘制文字

cv2.putText(图片, 文字, 位置, 字体, 文字大小, 颜色, 粗细)

案例演示:

import cv2
image=cv2.imread("okok.jpg")
cv2.putText(image, "how cool am i!", (250, 350), cv2.FONT_HERSHEY_SIMPLEX, 2, (65,54,87), 2)
cv2.imshow("image",image)
cv2.waitKey()

噪点处理

噪点描述:拍摄时信号传输收到干扰产生的杂色,如下:

噪点处理,其实就是让他变模糊,模糊之后边界就会不明显。但是也会影响一定的画面。

所以一般情况下,是对图像的局部噪点严重的区域进行区域内的噪点处理。

注意下面的核必须是奇数。

高斯模糊

cv2.GaussianBlur(图像,高斯核,sigmaX,sigmaY,边界样式)
x与y差越大越模糊,0的话就是自行计算
实际上一般可以用下面形式进行使用
cv2.GaussianBlur(image,(5,5),0)

中值滤过(像素排序取中值平滑处理)

cv2.medianBlur(图片,核)

案例演示

import cv2
image=cv2.imread("zaodian.jpeg")
cv2.imshow("image",image)
gauss=cv2.GaussianBlur(image,(5,5),0,11)
cv2.imshow("gauss",gauss)
median=cv2.medianBlur(image,5)
cv2.imshow("median",median)
cv2.waitKey()

效果演示

图片特征提取

(但是OpenCV提取图像特征的水平有限,如果需要特别的精准可以尝试别的库)

提取图片的特征,比如说转角,边缘,纹理啥的。

提取思路:先把图像给转化为灰度图,然后在灰度图中匹配转角这类的特征。

函数:

cv2.cvtColor(图片,cv2.COLOR_BGR2GRAY) #灰度处理
cv2.goodFeaturesToTrack(图片,最大特征数,点的质量,特征最小的距离)
.ravel()#点的坐标

案例演示

import cv2
image=cv2.imread("okok.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
corners=cv2.goodFeaturesToTrack(gray,500,0.1,10)
for corner in corners:x,y=corner.ravel()cv2.circle(image,(int(x),int(y)),2,(255,0,255),-1)
cv2.imshow("corners",image)
cv2.waitKey()

其实这些特征提取也不是特别的精准,看图中的特征点也能看出来,这些特征点也不足以准确的识别这个画面。

图片匹配

原理:

也是把指定的图片转化为灰度图,然后找特征点,之后在指定的图片中匹配有没有相似的特征点。

缺点:

对图片的大小敏感。也就是说我们给的图片距离镜头20m,但是在指定的图片中,这个图片在镜头50m的地方,就会因为大小不同而匹配不到。

解决思路:

可以改变图像的大小进行多次匹配,或者减少匹配的精度要求(误判多)。

(用到了numpy模块)

函数

灰度处理:cv2.cvtColor(图片,cv2.COLOR_BGR2GRAY)
匹配图像:cv2.matchTemplate(gray_video, target, cv2.TM_CCOEFF_NORMED)
获取坐标:numpy.where(match >= 匹配相似度)

案例演示

(我写的这个识别度不是很高,不过能识别基本的功能,有点人工智障)

调用摄像头实时识别书本上的java。

代码案例

import cv2
import numpy as np
image=cv2.imread("java.jpg")
video=cv2.VideoCapture(0)
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
x1,y1=617,608
x2,y2=967,734
target=gray[y1:y2,x1:x2]
cv2.imshow("okk",target)
h,w=target.shape[0:2]
print("{},{}".format(h,w))
a=1
while True:#循环valu,video1=video.read()#读取摄像头内容gray_video=cv2.cvtColor(video1,cv2.COLOR_BGR2GRAY)if a==1:a=2cv2.imshow("okkk",gray_video)match = cv2.matchTemplate(gray_video, target, cv2.TM_CCOEFF_NORMED)place = np.where(match >= 0.9)print(place)for p in zip(*place[::-1]):x_1, y_1 = p[0], p[1]x_2, y_2 = x_1 + w, y_1 + hprint(x_1,x_2)cv2.rectangle(video1,(x_1, y_2),(x_2, y_2),(156, 124, 21), 1)show=cv2.imshow("video",video1)#展示摄像头key=cv2.waitKey(1)#设置等待0.001秒刷新一次if key!=-1:#如果不是到时间刷新的视频就退出视频break

效果演示

嗯人工智障,识别条件特别苛刻。

不过也算是能够完成实时识别的功能了。

图像梯度算法

简介一下图像梯度:

图像梯度就像地理地图的等高线一样。

给我们分辨一个区域的图像像素变化的强度,如果他变化强度比较大,那么他大概率是图形的边缘。可以利用图像的梯度来分辨图像中的不同的物体。

拉普拉斯算子

作用:利用梯度的方法检测图像边缘,轮廓以及纹理。

函数:

常用写法:cv2.Laplacian(图片,cv2.CV_64F)
完整写法:cv2.Laplacian(image, dest, ddepth, ksize, scale, delta, borderType)
image是输入图像,dest是输出图像,ddepth是输出图像的深度,ksize是卷积核的大小,scale是拉普拉斯算子的系数

案例演示:

import cv2
image=cv2.imread("java.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
laplacian=cv2.Laplacian(gray,cv2.CV_64F)
cv2.imshow("yuantu",image)
cv2.imshow("suanfa",laplacian)
cv2.waitKey()

效果演示:

 canny算子

函数:

cv2.Canny(gray,边缘1,边缘2)

原理:

像素变化强度大于边缘2被判定为是边界,小于边界1被判定为不是边界。在两者之间的区域根据已经判断的区域进行判断。

源码如下:

import cv2
image=cv2.imread("java.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
canny=cv2.Canny(gray,100,200)
canny2=cv2.Canny(gray,50,100)
cv2.imshow("yuantu",image)
cv2.imshow("canny",canny)
cv2.imshow("canny2",canny2)
cv2.waitKey()

效果演示:

好处就是自己能规定他判断的严格程度。

阈值算法(二值化)

普通算法

描述:众所周知,我们世界的颜色并不是绝对的黑白,我们由黑白之间可以配出很多种灰色。

我们就可以用这个原理来把这些灰色绝对化。满足某个值的就变成黑色,不满足的就是白色。

这样就可以识别一些黑暗环境中的文字或者物品。

(但也别指望太准,要是拿个你自己都分辨不出来的图片,用这个也不容易。。。)

函数

cv2.threshold(图片,阈值,最大灰度,处理方法)
本案例用的函数:cv2.threshold(gray,100,255,cv2.THRESH_BINARY)
(因为这张照片环境明堂堂的。。。)

案例演示

import cv2
image=cv2.imread("java.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
ret,binary=cv2.threshold(gray,100,255,cv2.THRESH_BINARY)
cv2.imshow("binary",binary)
cv2.waitKey()

效果演示

分区二值化算法

OpenCV有内置的分区二值化算法,自动计算这个小区域的阈值,并设定合适的阈值。

函数

函数:(案例)
cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,115,1)该函数有以下参数:src: 要二值化的原始图像。maxval: 阈值的最大值。adaptiveMethod: 用于计算阈值的方法。有两个选项可供选择:cv2.ADAPTIVE_THRESH_MEAN_C和cv2.ADAPTIVE_THRESH_GAUSSIAN_C。推荐使用默认的cv2.ADAPTIVE_THRESH_GAUSSIAN_C。thresholdType: 阈值类型。可以是cv2.THRESH_BINARY或cv2.THRESH_BINARY_INV。推荐使用默认的cv2.THRESH_BINARY。blockSize: 每个局部区域的大小,用来计算局部阈值。C: 从平均值或加权平均值中减去的常数。该参数在计算局部阈值时起到调整阈值的作用。

案例演示

import cv2
image=cv2.imread("java.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
binary_adaptive=cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,115,1)
cv2.imshow("binary",binary_adaptive)
cv2.waitKey()

结果演示

可以看到,明显的比自己写的那个好用。

大金算法

算法原理:找两个最大的值,然后取两个值的中心。让黑白差异最大化。

函数

cv2.threshold(gray,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)

好处

完全不用咱们自己设置阈值,他自己就可以设置的明明白白的。

但是也有缺点,不如自己设置的完美,有时候可能不是很好用。

案例演示

import cv2
image=cv2.imread("java.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
ret1,binary_otsu=cv2.threshold(gray,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
cv2.imshow("binary",binary_otsu)
cv2.waitKey()

效果演示

腐蚀与膨胀

腐蚀:就是给图像变瘦一点(减少白色)

膨胀:相反,给图像变胖一点(增加白色)

作用:可以处理图像边缘,放大或者缩小图像的细节。

函数

他们都需要创建一个核

np.ones((5, 5), np.uint8)

膨胀与腐蚀

cv2.erode(图像, kernel)  # 腐蚀
cv2.dilate(图像, kernel)  # 膨胀

案例演示:

import cv2
import numpy as np
image=cv2.imread("java.jpg")
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
ret1,binary_otsu=cv2.threshold(gray,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
kernel = np.ones((5, 5), np.uint8)
erosion = cv2.erode(binary_otsu, kernel)  # 腐蚀
dilate = cv2.dilate(binary_otsu, kernel)  # 膨胀
cv2.imshow("binary",binary_otsu)
cv2.imshow("er",erosion)
cv2.imshow("di",dilate)
cv2.waitKey()

效果演示:

腐蚀

膨胀

 这里看到,明明是腐蚀但是感觉像是做出膨胀的效果,这是因为这个是腐蚀白色。所以对于黑色来说是膨胀了。

总结

OK,这些就是OpenCV的基础了。

他还有很多深入的算法,需要自己挖掘。

掌握了这些就能实现一些基本的功能了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/331773.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JAVA -- > 初识JAVA

初始JAVA 第一个JAVA程序详解 public class Main {public static void main(String[] args) {System.out.println("Hello world");} }1.public class Main: 类型,作为被public修饰的类,必须与文件名一致 2.public static 是JAVA中main函数准写法,记住该格式即可 …

碌时刻必备!微信自动回复让你告别消息堆积

在忙碌的时候,我们往往会面临消息堆积如山的情况。无法及时回复消息不仅容易造成交流障碍,还可能错过重要的机会。 但是现在,有一个神奇的工具——个微管理系统,可以帮助我们轻松应对这个问题 ,实现微信自动回复。 首…

【DZ模板】价值288克米设计APP手机版DZ模板 数据本地化+完美使用

模版介绍 【DZ模板】价值288克米设计APP手机版DZ模板 数据本地化完美使用 腾讯官方出品discuz论坛DIY的后台设置,功能齐全,论坛功能不亚于葫芦侠,自定义马甲,自定义认证,自定义广告,完全可以打造出自己想…

【手把手带你搓组件库】从零开始实现Element Plus

从零开始实现Element Plus 前言亮点项目搭建1、创建项目初始化monorepo创建 .gitignore目录结构安装基础依赖配置文件创建各个分包入口utilscomponentscoreplaytheme 2、创建VitePress文档3、部署到Github Actions生成 GH_TOKENGitHub Page 演示 4、总结 前言 在本文中&#xf…

《计算机网络微课堂》3-11 虚拟局域网 VLAN

本节课我们介绍虚拟局域网 VLAN 的基本概念。 ‍ 3.11.1 虚拟局域网 VLAN 概述 在之前课程中我们已经介绍过了以太网交换机自学习和转发帧的流程,‍‍以及为避免网络环路而产生的生成树协议。 以太网交换机工作在数据链路层,‍‍也包括物理层&#xf…

ftp是什么,ftp能做什么,ftp有什么用 -----ftp介绍

大家好,我是风屿,今天开始我会给大家介绍一些关于网络方面的配置以及介绍等等,今天是ftp FTP中文名字叫做文件传输协议,英文名字叫做File Transfer Protocol(简称为ftp) FTP 是因特网网络上历史最悠久的网…

Textual for Mac:轻量级IRC客户端

在寻找一款高效、轻量级的IRC客户端时,Textual for Mac无疑是你的不二之选。它集成了众多现代技术,如本机IPv6、最新的IRCv3规范,以及客户端证书身份验证,让你的聊天体验更加顺畅和安全。 Textual for Mac v7.2.2免激活版下载 Tex…

4、PHP的xml注入漏洞(xxe)

青少年ctf&#xff1a;PHP的XXE 1、打开网页是一个PHP版本页面 2、CTRLf搜索xml&#xff0c;发现2.8.0版本&#xff0c;含有xml漏洞 3、bp抓包 4、使用代码出发bug GET /simplexml_load_string.php HTTP/1.1 补充&#xff1a; <?xml version"1.0" encoding&quo…

【C++】深入解析C++智能指针:从auto_ptr到unique_ptr与shared_ptr

文章目录 前言&#xff1a;1. 智能指针的使用及原理2. C 98 标准库中的 auto_ptr:3. C 11 中的智能指针循环引用&#xff1a;shared_ptr 定制删除器 4. 内存泄漏总结&#xff1a; 前言&#xff1a; 随着C语言的发展&#xff0c;智能指针作为现代C编程中管理动态分配内存的一种…

Win32 API

个人主页&#xff1a;星纭-CSDN博客 系列文章专栏 : C语言 踏上取经路&#xff0c;比抵达灵山更重要&#xff01;一起努力一起进步&#xff01; 一.Win32 API 1.Win32 API介绍 Windows这个多作业系统除了协调应⽤程序的执⾏、分配内存、管理资源之外&#xff0c;它同时也是…

python中的线程并行

文章目录 1. 单线程2. 线程池ThreadPoolExecutor 1. 单线程 现在有1154张图片需要顺时针旋转后保存到本地&#xff0c;一般使用循环1154次处理&#xff0c;具体代码如下所示&#xff0c;img_paths中存储1154个图片路径&#xff0c;该代码段耗时约用97ms。 t1time.time() for …

Windows安装VMware(Broadcom)

1.安装前提 1.检查BIOS中是否开启了虚拟化技术。1.1 打开任务管理器&#xff0c;查看性能&#xff0c;CPU部分&#xff0c;虚拟化处于“已启用”状态。1.2 如果没有开启&#xff0c;则需要进入BIOS系统&#xff0c;将 Intel Virtualization Technology改为Enalble。2.下载VMwa…

ROS2入门21讲__第19讲__Rviz:三维可视化显示平台

目录 前言 Rviz三维可视化平台 Rviz介绍 运行方法 彩色相机仿真与可视化 仿真插件配置 运行仿真环境 图像数据可视化 三维相机仿真与可视化 仿真插件配置 运行仿真环境 点云数据可视化 激光雷达仿真与可视化 仿真插件配置 运行仿真环境 点云数据可视化 Rviz v…

【HCIP学习】RSTP和MSTP

一、RSTP&#xff08;Rapid Spanning Tree Protocol&#xff0c;快速生成树&#xff09; 1、背景&#xff1a;RSTP从STP发展而来&#xff0c;具备STP的所有功能&#xff0c;可以兼容stp运行 2、RSTP与STP不同点 &#xff08;1&#xff09;减少端口状态 STP:disabled\blockin…

【Python搞定车载自动化测试】——Python实现CAN总线Bootloader刷写(含Python源码)

系列文章目录 【Python搞定车载自动化测试】系列文章目录汇总 文章目录 系列文章目录&#x1f4af;&#x1f4af;&#x1f4af; 前言&#x1f4af;&#x1f4af;&#x1f4af;一、环境搭建1.软件环境2.硬件环境 二、目录结构三、源码展示1.诊断基础函数方法2.诊断业务函数方法…

《最新出炉》系列入门篇-Python+Playwright自动化测试-40-录制生成脚本

宏哥微信粉丝群&#xff1a;https://bbs.csdn.net/topics/618423372 有兴趣的可以扫码加入 1.简介 各种自动化框架都会有脚本录制功能&#xff0c; playwright这么牛叉当然也不例外。很早之前的selenium、Jmeter工具&#xff0c;发展到每种浏览器都有对应的录制插件。今天我们…

python机器学习及深度学习在空间模拟与时间预测

原文链接https://mp.weixin.qq.com/s?__bizMzUyNzczMTI4Mg&mid2247628504&idx2&sn6fe3aeb9f63203cfe941a6bb63b49b85&chksmfa77a9e5cd0020f3aa4f01887e75b15096a182c2b5b42c1044787aa285c650f1469a0ef28aec&token2124656491&langzh_CN&scene21#we…

C++语法|虚函数与多态详细讲解(六)|如何解释多态?(面试向)

系列汇总讲解&#xff0c;请移步&#xff1a; C语法&#xff5c;虚函数与多态详细讲解系列&#xff08;包含多重继承内容&#xff09; 多态分为了两种&#xff0c;一种是静态的多态&#xff0c;一种是动态的多态。 静态&#xff08;编译时期&#xff09;的多态 函数重载 boo…

基于51单片机温度报警系统—数码管显示

基于51单片机温度报警系统 &#xff08;仿真&#xff0b;程序&#xff0b;原理图&#xff0b;设计报告&#xff09; 功能介绍 具体功能&#xff1a; 1.DS18B20采集温度&#xff0c;数码管显示温度&#xff1b; 2.温度测量范围&#xff1a;0-99度&#xff1b; 3.当温度低于…

NDIS小端口驱动开发(三)

微型端口驱动程序处理来自过度驱动程序的发送请求&#xff0c;并发出接收指示。 在单个函数调用中&#xff0c;NDIS 微型端口驱动程序可以指示具有多个接收 NET_BUFFER_LIST 结构的链接列表。 微型端口驱动程序可以处理对每个NET_BUFFER_LIST结构上具有多个 NET_BUFFER 结构的多…