【Python】 XGBoost模型的使用案例及原理解析


原谅把你带走的雨天
在渐渐模糊的窗前
每个人最后都要说再见
原谅被你带走的永远
微笑着容易过一天
也许是我已经 老了一点
那些日子你会不会舍不得
思念就像关不紧的门
空气里有幸福的灰尘
否则为何闭上眼睛的时候
又全都想起了
谁都别说
让我一个人躲一躲
你的承诺
我竟然没怀疑过
反反覆覆
要不是当初深深深爱过
我试着恨你
却想起你的笑容
                     🎵 陈楚生/单依纯《原谅》


XGBoost(Extreme Gradient Boosting)是一种常用的梯度提升树(GBDT)算法的高效实现,广泛应用于各类数据科学竞赛和实际项目中。它的优势在于高效、灵活且具有很强的性能。下面,我们通过一个实际案例来说明如何使用XGBoost模型,并解释其原理。

案例背景

假设我们有一个客户流失预测的数据集,其中包含客户的特征数据及其是否流失的标注(流失为1,未流失为0)。我们需要构建一个XGBoost模型来预测客户是否会流失。

数据准备

首先,我们加载并准备数据。

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report, accuracy_score
import xgboost as xgb# 加载数据
df = pd.read_csv('customer_churn.csv')# 特征工程和数据预处理
X = df.drop('churn', axis=1)
y = df['churn']# 将数据分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)# 数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
模型训练
使用XGBoost进行模型训练。python
复制代码
# 转换数据格式为DMatrix,这是XGBoost高效的数据格式
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)# 设置XGBoost参数
params = {'booster': 'gbtree','objective': 'binary:logistic','eval_metric': 'logloss','eta': 0.1,'max_depth': 6,'scale_pos_weight': 80,  # 处理不平衡数据,正负样本比例为1:80'subsample': 0.8,'colsample_bytree': 0.8,'seed': 42
}# 训练模型
num_round = 100
bst = xgb.train(params, dtrain, num_round)# 模型预测
y_pred_prob = bst.predict(dtest)
y_pred = (y_pred_prob > 0.5).astype(int)# 评估模型
print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
print(classification_report(y_test, y_pred))

XGBoost原理解析

XGBoost是一种基于梯度提升(Gradient Boosting)算法的集成学习方法。梯度提升算法通过构建多个弱学习器(通常是决策树)来提升模型的预测性能。以下是XGBoost的关键原理:

  1. 加法模型和迭代训练:梯度提升是通过逐步迭代训练多个弱学习器(树模型),每个新的树模型学习前一轮残差(预测误差),即试图纠正前一轮模型的错误。

  2. 目标函数:XGBoost的目标函数由两部分组成:损失函数和正则化项。损失函数衡量模型的预测误差,正则化项控制模型的复杂度,防止过拟合。
    在这里插入图片描述

  3. 缺失值处理:XGBoost可以自动处理数据中的缺失值,通过在训练过程中找到最优的缺失值分裂方向。

  4. 并行计算:XGBoost在构建树的过程中,利用特征并行和数据并行技术,极大地提高了计算效率。
    在这里插入图片描述

  5. 缺失值处理:XGBoost可以自动处理数据中的缺失值,通过在训练过程中找到最优的缺失值分裂方向。

  6. 并行计算:XGBoost在构建树的过程中,利用特征并行和数据并行技术,极大地提高了计算效率。

总结

XGBoost是一种强大的梯度提升算法,通过集成多个弱学习器来提高模型的预测性能。其高效的实现和诸多优化技术使其在实际应用中表现优异。通过调节参数如学习率、最大深度和正则化参数,XGBoost能够处理不同类型的任务,尤其是在处理不平衡数据集时具有很好的性能表现。在本案例中,我们展示了如何使用XGBoost进行客户流失预测,并解释了其背后的关键原理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/332228.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

部署LAMP平台

目录 一、LAMP简介与概述 1.1 各组件作用 1.2 LAMP平台搭建时各组件安装顺序 1.3 httpd服务的目录结构 1.4 httpd.conf配置文件 二、编译安装Apache httpd服务 2.1 关闭防火墙,将安装Apache所需软件包传到/opt目录下 2.2 安装环境依赖包 ​2.3 配置软件模块…

3.Redis之Redis的环境搭建redis客户端介绍

1.版本的选取 安装 Redis:Redis 5 系列~~ 在 Linux 中进行安装~~ Redis 官方是不支持 Windows 版本的~~ 微软维护了一个 Windows 版本的 Redis 分支 Centos和Ubuntu.Docker 2.如何进行安装??? 1.ubuntu 2.centos yum instal…

设计模式在芯片验证中的应用——模板方法

一、模板方法 模板方法(Template Method)设计模式是一种行为设计模式, 它在父类中定义了一个功能的框架, 允许子类在不修改结构的情况下重写功能的特定步骤。也就是模板方法定义了一组有序执行的操作,将一些步骤的实现留给子类,同…

【C语言】二叉树的实现

文章目录 前言⭐一、二叉树的定义🚲二、创建二叉树🎡三、二叉树的销毁🎉四、遍历二叉树1. 前序遍历2. 中序遍历3. 后序遍历4. 层序遍历 🌲五、二叉树的计算1. 计算二叉树结点个数2. 计算二叉树叶子结点的个数3. 计算二叉树的深度4…

Go语言之GORM框架(二) ——GORM的单表操作

前言 在上一篇文章中,我们对Gorm进行了介绍,而在这一篇文章中我们主要介绍GORM的单表查询与Hook函数,在进行今天的内容之前我们先事先说明一下,下面我们对单表进行操作的表结构如下: type Student struct {ID uint gorm:&qu…

C# WPF入门学习(四)—— 按钮控件

上期介绍了WPF的实现架构和原理,之后我们开始来使用WPF来学习各种控件。 一、尝试插入一个按钮(方法一) 1. VS2019 在界面中,点击工具栏中的视图,在下拉菜单中选择工具箱。 至于编译器中的视图怎么舒服怎么来布置&am…

肯尼亚大坝决堤反思:强化大坝安全监测的必要性

一、背景介绍 近日,肯尼亚发生了一起严重的大坝决堤事件。当地时间4月29日,肯尼亚内罗毕以北的一座大坝决堤,冲毁房屋和车辆。当地官员称,事故遇难人数已升至71人。这起事件再次提醒我们,大坝安全无小事,监…

绘唐3模型怎么放本地sd安装及模型放置位置 及云端sd部署

绘唐3模型怎么放本地sd安装及模型放置位置 及云端sd部署 资料里面授权方式: https://qvfbz6lhqnd.feishu.cn/wiki/CcaewIWnSiAFgokOwLycwi0Encf 云端和模型之间存在某种关联性。云端通常用于存储和管理大量数据,并提供计算和资源的服务。模型是对数据进…

揭秘 淘宝死店采集私信筛选,号称日赚500+

淘宝死店采集工具为电子商务创业者揭示了一个领域的新机遇,通过提供一系列深入分析和资源挖掘的功能,展现了从失败中寻找成功之道的独特方法论。以下是如何通过这种工具寻找电商平台中的隐含机会的几个关键方面: 分析失败的深层原因&#x…

简历–工作经历–通用

雇主将会很注意简历中的工作经历这一部分。在看完求职目标后,他们想了解你的历史,你曾在哪儿工作,工作了多长时间。他们想弄明白的是“你是个稳定可靠的人吗?”,“你发挥出的才能有哪些?”最重要的是你是否…

Java学习路线思维导图

目录 Java学习流程1.学习大纲2.Java开发中常用的DOS命令 Java入门学习思维导图 Java学习流程 通过大纲了解学习的重点,通过目录依次深入【注:Java环境的搭建百度,提升自己百度的能力】 1.学习大纲 学习流程如下: Java基础语法 …

vim操作手册

vim分为插入模式、命令模式、底行模式。 插入模式:编辑模式 命令模式:允许使用者通过命令,来进行文本的编辑控制 底行模式:用来进行让vim进行包括但不限于shell进行交互 w:保存 wq&am…

创新实训2024.05.26日志:服务端接口实现——用户开启多个会话

1. 概念图 类似于Kimi,文心一言,chatGPT等市面上主流的大模型,我们的大模型也支持同一个用户的多个会话,并且提供支持联系上下文给出解答的能力。 2. 基于会话的对话 在langchain chatchat这个对langchain框架进行二次封装的第三…

属于程序员的浪漫,一颗会跳动的心!!!

绘制一颗会跳动的心❤ 嘿嘿 可以说是程序员的专属浪漫了吧,就像点燃一颗LED灯一样?(我瞎说的啊,大家别当真,我很菜的!!!!) 程序就在下面啦,然…

xgboost项目实战-保险赔偿额预测与信用卡评分预测001

目录 算法代码 原理 算法流程 xgb.train中的参数介绍 params min_child_weight gamma 技巧 算法代码 代码获取方式:链接:https://pan.baidu.com/s/1QV7nMC5ds5wSh-M9kuiwew?pwdx48l 提取码:x48l 特征直方图统计: fig, …

【Linux】进程通信实战 —— 进程池项目

送给大家一句话: 没有一颗星,会因为追求梦想而受伤,当你真心渴望某样东西时,整个宇宙都会来帮忙。 – 保罗・戈埃罗 《牧羊少年奇幻之旅》 🏕️🏕️🏕️🏕️🏕️🏕️ &a…

Stream流的使用

目录 一,Stream流 1.1 概述 1.2 Stream代码示例 二,Stream流的使用 2.1 数据准备 2.2 创建流对象 2.3 中间操作 filter map distinct sorted limit skip flatMap 2.4 终结操作 foreach count max&min collect 2.5 查找与匹配 a…

免费图片文字转换成文本,ocr文字识别软件免费版,真的太实用了!

截屏短视频上一段扎心文字,想把它发到朋友圈怎么办?这时候就需要一个OCR识别软件。 它就像一个聪明的小助手,它可以帮助电脑“看懂”书本上或者图片里的字。就像我们用眼睛看字一样,OCR软件用它的“眼睛”扫描图片,识…

【组合数学】常考试题答案

一、单项选择题(每小题3分,共15分) 1. 用3个“1”和4个“0”能组成( )个不同的二进制数字。 A. 35 B. 36, C. 37, D. 38 2. 整除300的正整数的个数为(  )。 A. 14…