2024年中国电机工程学会杯数学建模思路 - 案例_ ID3-决策树分类算法

# 前言

2024电工杯(中国电机工程学会杯)数学建模思路解析

最新思路更新(看最新发布的文章即可):
https://blog.csdn.net/dc_sinor?type=bloghttps://blog.csdn.net/dc_sinor/article/details/128779911)

算法介绍

FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联规则的步骤还是和Apriori是一样的。

常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下。FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高。

FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。

FP树表示法

FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。

一颗FP树如下图所示:
  在这里插入图片描述
通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。

FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。

为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。
  在这里插入图片描述

构建FP树

现在有如下数据:

在这里插入图片描述

FP-growth算法需要对原始训练集扫描两遍以构建FP树。

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。
在这里插入图片描述

第二次扫描,构造FP树。

参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。

实现代码

def loadSimpDat():simpDat = [['r', 'z', 'h', 'j', 'p'],['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],['z'],['r', 'x', 'n', 'o', 's'],['y', 'r', 'x', 'z', 'q', 't', 'p'],['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]return simpDatdef createInitSet(dataSet):retDict = {}for trans in dataSet:fset = frozenset(trans)retDict.setdefault(fset, 0)retDict[fset] += 1return retDictclass treeNode:def __init__(self, nameValue, numOccur, parentNode):self.name = nameValueself.count = numOccurself.nodeLink = Noneself.parent = parentNodeself.children = {}def inc(self, numOccur):self.count += numOccurdef disp(self, ind=1):print('   ' * ind, self.name, ' ', self.count)for child in self.children.values():child.disp(ind + 1)def createTree(dataSet, minSup=1):headerTable = {}#此一次遍历数据集, 记录每个数据项的支持度for trans in dataSet:for item in trans:headerTable[item] = headerTable.get(item, 0) + 1#根据最小支持度过滤lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))for k in lessThanMinsup: del(headerTable[k])freqItemSet = set(headerTable.keys())#如果所有数据都不满足最小支持度,返回None, Noneif len(freqItemSet) == 0:return None, Nonefor k in headerTable:headerTable[k] = [headerTable[k], None]retTree = treeNode('φ', 1, None)#第二次遍历数据集,构建fp-treefor tranSet, count in dataSet.items():#根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度localD = {}for item in tranSet:if item in freqItemSet:localD[item] = headerTable[item][0]if len(localD) > 0:#根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] descorderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]updateTree(orderedItems, retTree, headerTable, count)return retTree, headerTabledef updateTree(items, inTree, headerTable, count):if items[0] in inTree.children:  # check if orderedItems[0] in retTree.childreninTree.children[items[0]].inc(count)  # incrament countelse:  # add items[0] to inTree.childreninTree.children[items[0]] = treeNode(items[0], count, inTree)if headerTable[items[0]][1] == None:  # update header tableheaderTable[items[0]][1] = inTree.children[items[0]]else:updateHeader(headerTable[items[0]][1], inTree.children[items[0]])if len(items) > 1:  # call updateTree() with remaining ordered itemsupdateTree(items[1:], inTree.children[items[0]], headerTable, count)def updateHeader(nodeToTest, targetNode):  # this version does not use recursionwhile (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list!nodeToTest = nodeToTest.nodeLinknodeToTest.nodeLink = targetNodesimpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()

上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。

控制台信息:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/332598.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

骑行 - 新区永旺出发的环太湖路线

环过好几次太湖&#xff0c;但对路线都没太在意&#xff0c;都是跟着别人走的。这次自己制定一个路书&#xff0c;方便下次自己一个人环太湖时使用。 开始是使用高德地图做路书&#xff0c;只能在PC上做。我用的是网页版&#xff0c;每次选点太麻烦了。要输入地址搜索&#xff…

Nginx代理配置(专业版)

写在前面提醒&#xff1a;使用代理&#xff0c;如果可以&#xff0c;请尽量支持双协议&#xff0c;http、https均要支持哈。 注意&#xff1a;监控系统只是运行代码&#xff0c;是否支持https&#xff0c;需要运维同学在你们的服务器上配置https证书&#xff0c;配置好证书&…

探索集合python(Set)的神秘面纱:它与字典有何不同?

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、集合&#xff08;Set&#xff09;与字典&#xff08;Dictionary&#xff09;的初识 1. …

Mysql函数

字符串函数 concat(s1,s2…sn)把传入的参数连接成一个字符串 注意&#xff1a;任何字符串与NULL进行连接的结果都将是NULL insert(str&#xff0c;x&#xff0c;y&#xff0c;instr)函数&#xff1a;将字符串str从第x位置开始&#xff0c;y个字符长度的字串替换为instr lower…

从“反超”到“引领”,中国卫浴品牌凭何遥遥领先?

作者 | 曾响铃 文 | 响铃说 前不久&#xff0c;第28届中国国际厨房、卫浴设施展览会(以下简称“中国国际厨卫展”)在上海如期举行&#xff0c;就结果来说真的让人大开眼界。 冲水声比蚊子声更小的马桶、能化身无感交互平台的魔镜柜、可以语音交互的淋浴器&#xff0c;这些“…

类与对象(上)

目录 ​编辑 一、面向过程和面向对象初步认识 二、类的引入 三、类的定义 四、类的访问限定符及封装 4.1 访问限定符 【面试题】 4.2 封装 【面试题】 五、类的作用域 六、类的实例化 七、类对象模型 7.1 如何计算类对象的大小 7.2 类对象的存储方式猜测 7.3 结…

Yolov9调用COCOAPI生成APs,APm,APl

最近在做小目标检测的东西&#xff0c;因为后期毕业论文需要&#xff0c;所以开始使用Yolov9模型&#xff0c;运行val.py的时候不会自己产生小目标的AP指标&#xff0c;所以研究了一下&#xff0c;步骤非常简单&#xff1a; 第一步&#xff1a; 在数据集中生成json格式的Annota…

ROS参数服务器

一、介绍 参数服务器是用于存储和检索参数的分布式多机器人配置系统&#xff0c;它允许节点动态地获取参数值。 在ROS中&#xff0c;参数服务器是一种用于存储和检索参数的分布式多机器人配置系统。它允许节点动态地获取参数值&#xff0c;并提供了一种方便的方式来管理和共享配…

开源大模型与闭源大模型

概述 开源大模型和闭源大模型是两种常见的大模型类型&#xff0c;它们在以下方面存在差异&#xff1a; 开放性&#xff1a; 开源大模型&#xff1a;代码和模型结构是公开可用的&#xff0c;任何人都可以访问、修改和使用。闭源大模型&#xff1a;模型的代码和结构是私有的&…

Thymeleaf 搭建家居网首页

文章目录 1.引入Thymeleaf sunliving-commodity模块1.在resources目录下引入Thymeleaf 所需资源2.pom.xml引入Thymeleaf依赖3.application.yml 关闭缓存&#xff0c;使页面实时刷新4.在application-prod.yml开启缓存5.编写com/sun/sunliving/commodity/web/IndexController.jav…

文心智能体大赛:百度文心智能体平台初体验

写在前面 博文内容涉及&#xff1a;文心智能体大赛:文心智能体初体验理解不足小伙伴帮忙指正 &#x1f603;,生活加油 我徒然忘记了热闹&#xff0c;却来不及悟透真正的清冷(《四喜忧国》) 前言 徒然忘记了热闹&#xff0c;却来不及悟透真正的清冷(《四喜忧国》)&#xff0c;在…

LiveGBS流媒体平台GB/T28181用户手册-版本信息:查看机器码、切换查看流媒体服务

LiveGBS流媒体平台GB/T28181用户手册--版本信息:查看机器码、切换查看流媒体服务 1、版本信息1.1、查看机器码1.2、多个流媒体服务1.3、提交激活 2、搭建GB28181视频直播平台 1、版本信息 版本信息页面&#xff0c;可以查看到信令服务 流媒体服务相关信息&#xff0c;包含硬件…

从XPS迁移到IP Integrator

从XPS迁移到IP Integrator 概述 AMD Vivado™设计套件IP集成器可让您将包含AMD的设计缝合在一起 IP或您的自定义IP在相对较短的时间内&#xff0c;在GUI环境中工作。 就像在Xilinx Platform Studio中一样&#xff0c;您可以快速创建嵌入式处理器设计&#xff08;使用&#xff0…

[C++]debug介绍+debug时如何查看指针指向内存处的值

一、简介 预备工具和知识&#xff1a;使用使用VSCode使用Debug。 本文简介&#xff1a;本文将简要介绍debug中Continue&#xff0c;Step Over&#xff0c;Step Into和Restart的功能。并介绍如何在debug时查看动态内存地址&#xff08;指针&#xff09;的值&#xff1b; 二、D…

基于信号分解方法的机械故障诊断方法存在的问题

一方面&#xff0c;由于结构共振、测试噪声的干扰&#xff0c;为了确保分解精度&#xff0c;需要给定准确的参数初值(例如&#xff0c;瞬时频率)。研究人员通常认为零部件特征频率与通过传动比和驱动转速计算的理论值基本吻合&#xff0c;并基于理论值设置参数初值。事实上&…

upload-labs 21关解析

目录 一、代码审计 二、实践 三、总结 一、代码审计 $is_upload false; $msg null; if(!empty($_FILES[upload_file])){//检查MIME$allow_type array(image/jpeg,image/png,image/gif);if(!in_array($_FILES[upload_file][type],$allow_type)){$msg "禁止上传该类型…

【Docker学习】深入研究命令docker exec

使用docker的过程中&#xff0c;我们会有多重情况需要访问容器。比如希望直接进入MySql容器执行命令&#xff0c;或是希望查看容器环境&#xff0c;进行某些操作或访问。这时就会用到这个命令&#xff1a;docker exec。 命令&#xff1a; docker container exec 描述&#x…

【网络技术】【Kali Linux】Wireshark嗅探(十五)SSDP(简单服务发现协议)报文捕获及分析

往期 Kali Linux 上的 Wireshark 嗅探实验见博客&#xff1a; 【网络技术】【Kali Linux】Wireshark嗅探&#xff08;一&#xff09;ping 和 ICMP 【网络技术】【Kali Linux】Wireshark嗅探&#xff08;二&#xff09;TCP 协议 【网络技术】【Kali Linux】Wireshark嗅探&…

什么是聚簇索引和非聚簇索引,如何理解回表、索引下推

聚簇索引&#xff08;Clustered Index&#xff09;和非聚簇索引&#xff08;Non-clustered Index&#xff09;是数据库中的两种索引类型&#xff0c;它们在组织和存储数据时有不同的方式。 聚簇索引 聚簇索引简单理解就是将数据与索引放在一起&#xff0c;找到索引即找到了数…

第十三节:带你梳理Vue2 : watch侦听器

官方解释:> 观察 Vue 实例变化的一个表达式或计算属性函数。回调函数得到的参数为新值和旧值。表达式只接受监督的键路径。对于更复杂的表达式&#xff0c;用一个函数取代<br/>## 1. 侦听器的基本使用侦听器可以监听data对象属性或者计算属性的变化watch是观察属性的…