Stable Diffusion AI绘画:从提示词到模型出图的全景指南

  • 💂 个人网站:【 摸鱼游戏】【神级代码资源网站】【工具大全】
  • 🤟 一站式轻松构建小程序、Web网站、移动应用:👉注册地址
  • 🤟 基于Web端打造的:👉轻量化工具创作平台
  • 💅 想寻找共同学习交流,摸鱼划水的小伙伴,请点击【全栈技术交流群】

Stable Diffusion 是近年来备受关注的一种AI绘画技术,它能够根据文本提示生成高质量的图像。本文将详细介绍Stable Diffusion 的工作原理、技术架构以及如何使用该技术从提示词生成图像,并附上示例代码,帮助你更好地理解和应用这项技术。

什么是 Stable Diffusion?

Stable Diffusion 是一种基于扩散模型(Diffusion Models)的图像生成技术。扩散模型通过逐步添加和去除噪声来训练神经网络,从而生成高质量的图像。这种方法在图像生成任务中表现出色,能够根据输入的文本提示生成符合描述的图像。

Stable Diffusion 的工作原理

Stable Diffusion 的核心原理是扩散过程,它包括两个主要阶段:

  1. 正向扩散过程:将训练数据中的图像逐步添加噪声,直到图像变成纯噪声。这一过程帮助模型学习如何在不同的噪声水平下还原图像。

  2. 逆向扩散过程:训练好的模型根据输入的噪声图像逐步去除噪声,最终生成高质量的图像。在生成过程中,模型会结合输入的文本提示,生成与提示相符的图像。

Stable Diffusion 的技术架构

Stable Diffusion 的技术架构主要由以下几个部分组成:

  1. 编码器(Encoder):将输入的文本提示编码成向量表示,作为生成图像的条件输入。

  2. 噪声预测网络(Noise Prediction Network):基于U-Net架构,预测并去除图像中的噪声。

  3. 调度器(Scheduler):控制扩散过程中的噪声添加和去除步骤,确保生成过程的稳定性和效果。

从提示词到模型出图的流程

以下是使用 Stable Diffusion 从提示词生成图像的完整流程:

1. 安装必要的依赖

首先,需要安装必要的Python库和 Stable Diffusion 模型的依赖项。可以使用以下命令:

pip install torch torchvision transformers diffusers

2. 加载模型和其他组件

接下来,加载预训练的 Stable Diffusion 模型和相关组件。以下是示例代码:

import torch
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import StableDiffusionPipeline# 加载CLIP文本编码器和分词器
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")# 加载Stable Diffusion模型
model_id = "CompVis/stable-diffusion-v1-4"
pipeline = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipeline = pipeline.to("cuda")

3. 编码文本提示

使用CLIP文本编码器将输入的文本提示编码成向量表示:

prompt = "A futuristic cityscape at sunset"
inputs = tokenizer(prompt, return_tensors="pt")
text_embeddings = text_encoder(**inputs).last_hidden_state

4. 生成图像

使用 Stable Diffusion 模型生成图像:

# 生成图像
num_images_to_generate = 1
generated_images = pipeline(prompt, num_images_to_generate=num_images_to_generate, guidance_scale=7.5).images# 保存或显示生成的图像
generated_images[0].save("generated_image.png")

5. 完整示例代码

以下是完整的示例代码,展示了如何使用 Stable Diffusion 从提示词生成图像:

import torch
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import StableDiffusionPipeline
from PIL import Image# 加载CLIP文本编码器和分词器
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")# 加载Stable Diffusion模型
model_id = "CompVis/stable-diffusion-v1-4"
pipeline = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipeline = pipeline.to("cuda")# 编码文本提示
prompt = "A futuristic cityscape at sunset"
inputs = tokenizer(prompt, return_tensors="pt")
text_embeddings = text_encoder(**inputs).last_hidden_state# 生成图像
num_images_to_generate = 1
generated_images = pipeline(prompt, num_images_to_generate=num_images_to_generate, guidance_scale=7.5).images# 保存或显示生成的图像
generated_images[0].save("generated_image.png")# 显示生成的图像
Image.open("generated_image.png").show()

未来展望

Stable Diffusion 作为一种先进的AI绘画技术,展现了巨大的潜力和广泛的应用前景。随着模型的不断优化和扩展,未来将能够生成更高质量、更符合用户需求的图像。无论是艺术创作、广告设计,还是游戏开发,Stable Diffusion 都将成为重要的技术工具。

通过本文的介绍,相信你已经对 Stable Diffusion 的工作原理和实际应用有了全面的了解。希望这些示例代码能够帮助你在实际项目中更好地应用这项技术,创造出更多精彩的图像作品。

⭐️ 好书推荐

《Stable Diffusion AI绘画从提示词到模型出图》

在这里插入图片描述

【内容简介】

本书从ChatGPT的基础知识讲起,针对运营工作中的各种痛点,结合实战案例,如文案写作、图片制作、社交媒体运营、爆款视频文案、私域推广、广告策划、电商平台高效运营等,手把手教你使用ChatGPT进行智能化工作。此外,还介绍了通过ChatGPT配合Midjourney、D-ID等AI软件的使用,进一步帮助提高运营工作的效率。

在这里插入图片描述在这里插入图片描述

📚 京东购买链接:《Stable Diffusion AI绘画从提示词到模型出图》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/333819.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

飞睿智能高精度、低功耗测距,无线室内定位UWB芯片如何改变智能家居

在数字化和智能化快速发展的今天,定位技术已经成为我们日常生活中不可或缺的一部分。然而,传统的GPS定位技术在室内环境中往往束手无策,给我们的生活带来了诸多不便。幸运的是,随着科技的不断进步,一种名为UWB&#xf…

【XR806开发板试用】基础篇,从零开始搭建一个LCD彩屏时钟(ST7735S驱动)

本文从搭建环境开始,step by step教大家使用XR806实现驱动SPI屏幕(ST7735S驱动),并连接WiFi实现ntp对时,最终实现把时间显示到屏幕上。 #1. 搭建开发环境 1. 安装编译环境所需的依赖包 基于ubuntu 20.04,按…

【高阶数据结构(七)】B+树, 索引原理讲解

💓博主CSDN主页:杭电码农-NEO💓   ⏩专栏分类:高阶数据结构专栏⏪   🚚代码仓库:NEO的学习日记🚚   🌹关注我🫵带你学习更多数据结构   🔝🔝 高阶数据结构 1. 前言2. B树讲解…

【Web】CISCN 2024初赛 题解(全)

目录 Simple_php easycms easycms_revenge ezjava mossfern sanic Simple_php 用php -r进行php代码执行 因为ban了引号,考虑hex2bin,将数字转为字符串 php -r eval(hex2bin(16进制)); 注意下面这段报错,因为加不了引号,开…

【网络原理】HTTPS详解

一.HTTPS的相关基本概念 HTTPS:由于HTTP协议内容都是按照文本的方式明文传输的. 这就导致在传输过程中出现一些被篡改的情况. 可能会出现运营商劫持,黑客入侵等不利影响, 因此就引入了HTTPS,其本质上就是在HTTP协议的基础上,引入了一个加密层SSM.什么是运营商劫持? 例如我们要…

【服务器报错】Pycharm运行服务器代码提示 can‘t open file “本地文件路径“

1. 问题 Pycharm连接远程服务器,代码已经同步,运行时候报错 #模拟报错 bash: line 0: cd: G:/python/hhh/Hi: No such file or directory /home/hhh/anaconda3/envs/hard/bin/python: cant open file G:/python/hhh/hi/hei.py: [Errno 2] No such file…

SpringBootTest测试框架五

示例 package com.xxx;import com.xxx.ut.AbstractBasicTest; import com.xxx.ut.uttool.TestModel; import com.xxx.ut.uttool.TestModelEnum; import org.junit.jupiter.api.Test; import org.springframework.beans.factory.annotation.Autowired;public class QueryXXXImp…

Keras深度学习框架第二十讲:使用KerasCV中的Stable Diffusion进行高性能图像生成

1、绪论 1.1 概念 为便于后文讨论,首先进行相关概念的陈述。 Stable Diffusion:Stable Diffusion 是一个在图像生成领域广泛使用的技术,尤其是用于文本到图像的转换。它基于扩散模型(Diffusion Models),这…

软件测试金字塔,对号入座,你在哪层?

自从学习了软件测试,脑袋也清晰了,目标也明确了,就是不知道学到哪里了.中间有很多的困难也有很多成就感,你目前在那个阶段呢? 初级测试工程师 技能要求:需求分析,使用等价类边界值等方法进行用例设计,执行功能测试,发现提交跟踪bug,使用禅道,会在测试中会操作数据库进行检查和…

Android Activity 设计详解

文章目录 Android Activity 设计说明1. Activity 的生命周期2. Activity 的启动模式3. Activity 的通信4. Activity 的布局和视图管理5. Activity 的配置变化处理6. Activity 的保存和恢复状态7. Activity 的任务和返回栈 总结 Android Activity 设计说明 在 Android 中&#…

css3 笔记02

目录 01 过渡 02 rotate旋转 03 translate函数 04 真正的3D 05 动画 06 阴影 07 自定义字体库 08 自定义动画库 01 过渡 过渡属性的使用: transition-property:要过渡的css属性名 多个属性用逗号隔开 过渡所有属性就写all transition-duration: 过渡的持续时间 s秒 …

万博智云×华为云 | HyperBDR云容灾上架,开启联营联运新篇章

日前,万博智云HyperBDR云容灾正式入驻华为云云商店,成为华为云基础软件领域联营联运合作伙伴。通过联营联运,双方将进一步加深在产品、解决方案、渠道拓展等多方面的强强联合,为企业提供更加安全、高效的数据保护解决方案&#xf…

力扣503. 下一个更大元素 II

Problem: 503. 下一个更大元素 II 文章目录 题目描述思路复杂度Code 题目描述 思路 由于此题是环形数组,我们在利用单调栈模板的基础上还需要将给定数组扩大一倍,但实际上我们只需要利用取余的操作模拟扩大数组即可(具体操作看代码。在解决有…

【简单介绍下容器是什么?】

🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出…

c++ (命名空间 字符串)

思维导图&#xff1a; 定义自己得命名空间myspace,在myspace中定义string类型变量s1,再定义一个函数完成字符串逆置 #include <iostream> #include <cstring> //定义自己得命名空间myspace,在myspace中定义string类型变量s1,再定义一个函数完成字符串逆置 using n…

python 办公自动化-生成ppt文本和图

最终样式 代码实现 # 可编辑折线+写入文字 成功 # 问题: 设置字体类型和加粗和字体为微软雅黑,是只改了字母和数字的字体,中文没变化 pip install pptx_ea_font 这个库可以解决这个问题 import pandas as pd import pptx_ea_font import matplotlib.pyplot as plt from pp…

社交媒体数据恢复:云叙

在使用云盘的过程中&#xff0c;由于误操作或其他原因&#xff0c;我们可能会遇到数据丢失的问题。了解云盘数据恢复的原理和技巧对于确保云盘数据安全非常重要。接下来&#xff0c;我将为您提供一份关于云盘数据恢复的教程。 一、文件恢复 当您发现文件丢失或损坏后&#xff0…

Wpf 使用 Prism 实战开发Day26

首页待办事项编辑和完成以及备忘录编辑功能 当用户双击待办事项或备忘录的时候&#xff0c;希望能进行编辑待办事项及备忘录的功能 一.在IndexView.xaml 视图&#xff0c;为待办和备忘录添加双击编辑功能 1.首先引入一个 behaviors 命名空间&#xff0c;用于进行处理鼠标双击…

K8S认证|CKA题库+答案| 14. 排查故障节点

目录 14、排查集群中的故障节点 CKA v1.29.0模拟系统 下载试用 题目&#xff1a; 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、查看节点状态 ​3&#xff09;、登录故障节点并提权 4&#xff09;、检查kubelet状态 5&#xff09;、 修复kubelet进程…

实现按块复制元素的进阶技巧

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、按块复制元素的重要性 二、使用LED模块创建数组并复制 三、实现按块复制的具体步骤 四…