【保姆级教程】基于OpenCV+Python的人脸识别上课签到系统

【保姆级教程】基于OpenCV+Python的人脸识别上课签到系统

  • 一、软件安装及环境配置
    • 1. 安装IDE:PyCharm
    • 2. 搭建Python的环境
    • 3. 新建项目、安装插件、库
  • 二、源文件编写
    • 1. 采集人脸.py
    • 2. 训练模型.py
    • 3. 生成表格.py
    • 4. 识别签到.py
    • 5. 创建图形界面.py
  • 三、相关函数分析
    • 1.采集人脸
    • 2.训练模型
    • 3.识别签到
    • 4.创建图形界面

一、软件安装及环境配置

1. 安装IDE:PyCharm

  • 进入PyCharm官网:https://www.jetbrains.com/pycharm/ ,点击Download.
    请添加图片描述

  • 选择系统版本windows,选择Community版本(因为免费),点击Downlad。
    在这里插入图片描述

  • 下载完成后双击开始安装,点击Next.
    在这里插入图片描述

  • 选择合适路径(建议除了C以外的其他盘),点击Next。

  • 勾选所有选项,点击Next.
    在这里插入图片描述

  • 点击Install,选择JetBrains.
    在这里插入图片描述

  • 等待安装结束,Rboot nowI want manually reboot later随便选一个即可,点击finish.
    在这里插入图片描述

  • 双击打开Pycharm,首次打开会出现如下弹窗,勾选方框,点击Continue。勾选Don’t send
    在这里插入图片描述
    在这里插入图片描述
    至此pyCharm软件安装完毕.

2. 搭建Python的环境

  • 打开Python官方网站:https://www.Python.org,点击Downlads.
    在这里插入图片描述

  • 进入Python下载界面,选择Windows.
    在这里插入图片描述

  • 选择下面红框框住的版本:Download Windows x86-64 executable installer
    在这里插入图片描述
    这可能会下载的非常慢,推荐Internat Download Manager下载器(简称IDM),可以加速外网资源的下载,几个线程同时下载提高下载速度(官方说的最多五倍,个人觉得不止),官方地址https://www.internetdownloadmanager.com/download.html.
    在这里插入图片描述
    鼠标移到安装包上,按右键复制地址,打开IDM后,新建任务,把下载资源地址复制进去即可.
    在这里插入图片描述

  • 下载完成后,双击Python-3.6.5rc1-amd64文件进行安装,切记在选项Add Python 3.6 to PATH的框中打钩,然后点击Install Now进入下一步.
    在这里插入图片描述
    注:安装时一定要自定义安装解释器,因为后续库的安装地址同解释器的安装位置。项目小还好,项目大会把C盘“撑爆”.

  • 耐心等待,安装完成后会弹出一个界面,点击close.
    在这里插入图片描述

  • 检查Python环境是否搭建成功,在Windows窗口中按 win+R,打开命令窗口,输入cmd,点击“确定”按钮,在新弹出的命令窗口中输入“Python” (或“py”)回车,显示如下界面说明安装成功。
    在这里插入图片描述
    在这里插入图片描述

3. 新建项目、安装插件、库

  • 打开pyCharm,点击新建项目,为新项目命名并选择路径,点击Create.
    在这里插入图片描述
  • 安装中文插件,在搜索框中输入Chinese,安装中文简体语言包.
    在这里插入图片描述
    在这里插入图片描述
    安装成功后,点击Restart IDE重启软件,即可换为中文模式.
  • 安装项目所需要的库,本项目用到的第三方库:opencv-python、opencv-contrib-python、pillow、
    numpy、tk、xlrd、xlwt、xlutils、DateTime。
    由于外网网速原因,大概率会面临安装失败的问题,此时可以采用国内镜像源,利用pip加速安装.
    在这里插入图片描述
    以opencv-python库为例,打开终端,输入下述命令:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python

在这里插入图片描述
终端pip安装完后,再打开python解释器安装软件包,速度快如飞雷神.
在这里插入图片描述
其余库安装流程类似,此处不做演示.

二、源文件编写

整体架构:
在这里插入图片描述

注意:把代码中涉及到的路径换为自己电脑下,否则编译器找不见报错

1. 采集人脸.py

演示:学号为:1111111111;姓名为:iu
在这里插入图片描述

首先,下载haarcascade_frontalface_default.xml,并把该xml文件移动到该项目下。下载地址https://gitcode.com/opencv/opencv/tree/master/data/haarcascades?utm_source=csdn_github_accelerator&isLogin=1

import cv2
import os# 定义变量
classifier = cv2.CascadeClassifier(r'D:\hello_world\pythonProject\haarcascade_frontalface_default.xml')
font = cv2.FONT_HERSHEY_SIMPLEX
stu_id = input('请输入你的学号: \n')
stu_name = input('请输入你的姓名: \n')
count = 0# 建立人脸数据文件夹
if not os.path.exists('data'):os.mkdir('data')# 打开摄像头
capture = cv2.VideoCapture(0)while capture.isOpened():kk = cv2.waitKey(1)_,farme = capture.read()gray = cv2.cvtColor(farme, cv2.COLOR_BGR2GRAY)faces = classifier.detectMultiScale(gray, 1.2, 5)if len(faces) != 0:for x, y, w, h in faces:cv2.rectangle(farme, (x, y), (x + w, y + h), (200, 0, 250), 2)# center = (x + w // 2, y + h // 2)# r = w // 2# cv2.circle(farme, center, r, (0, 250, 0), 2)cv2.putText(farme, 'Press "s" to save' , (x + w, y + h), font, 1, (200, 0, 250), 2)if kk == ord('s'):cv2.imwrite('data/'+str(stu_name)+'.'+str(stu_id)+'.'+str(count)+'.jpg', gray[y:y+h,x:x+w])count += 1print('采集了'+str(count)+'张图片。')cv2.putText(farme, 'Press "q" to quit', (30, 60), font, 1, (200, 0, 250), 2)cv2.imshow('Picture from capture',farme)if kk == ord('q'):print('共采集了学号为'+str(stu_id)+'姓名为'+str(stu_name)+'的同学的'+str(count)+'张图片')break# 释放摄像头
capture.release()
cv2.destroyAllWindows()

操作流程:右键运行’采集人脸’,输入自己的ID号(笔者是10位学号),输入姓名首字母(例:张三,输入zs),Enter。按s保存采集到的图像,一般采集20张,按q退出(注意:按s和q时必须切换至英文输入法模式)

2. 训练模型.py

import cv2
import numpy as np
from PIL import Image
import oscreate = cv2.face.LBPHFaceRecognizer_create()def data_translate(path):face_data = []id_data = []file_list = [os.path.join(path, f) for f in os.listdir(path)]# print(file_list)# print(len(file_list))for file in file_list:PIL_image = Image.open(file).convert('L')np_image = np.array(PIL_image, "uint8")# print(file)# print(file.split('.'))# print(file.split('.')[1])id = int(file.split('.')[1])# print(file.split('.')[0])face_data.append(np_image)id_data.append(id)return face_data, id_dataprint('开始训练模型')# data_translate(r'data\data')
Faces,Ids = data_translate(r'D:\hello_world\pythonProject\data')create.train(Faces,np.array((Ids)))create.save('trainer.yml')
print('模型保存成功')

操作流程:右键运行’训练模型’,运行成功后,会生成一个trainer.yml文件.

3. 生成表格.py

# 引入库
import xlrd
import xlwt
from xlutils.copy import copy# 创建工作簿
nwb = xlwt.Workbook()cjb = nwb.add_sheet('成绩表')
cjb.write_merge(0, 0, 0, 3, '成绩表')
a = ['序号', '学号', '姓名', '成绩', '签名', '签到时间']
for i in range(6):cjb.write(1, i, a[i])
name = ["iu", "张三", "李四", "王五"]
id = ['1111111111', '2020001111', '2020002222', '2020003333']
b = 0
for a in range(2, 6):# 写入学号cjb.write(a, 1, id[b])# 写入姓名cjb.write(a, 2, name[b])cjb.write(a, 0, b+1)b = b+1
# 保存文件
nwb.save('人脸识别excel.xls')

操作流程:右键运行’生成表格’,可根据自己需求增加name和id个数.

4. 识别签到.py

在这里插入图片描述
在这里插入图片描述

# 导入库
import cv2
import time
import xlrd
import xlwt
from xlutils.copy import copy
from datetime import datetime# 创建签名子函数
def sign_in(idx, name):style0 =xlwt.easyxf('font:height 300,bold on,color_index black', num_format_str= 'MM:DD HH:MM')style1 = xlwt.easyxf('font:height 300,bold on,color_index blue', num_format_str ='MM:DD HH:MM')wb = xlrd.open_workbook('人脸识别excel.xls')nwb = copy(wb)nbs=nwb.get_sheet(0)# 签名nbs.write(idx, 3, name, style1)# 签时间nbs.write(idx, 4, datetime.now(), style0)nbs.col(4).width=256*20nwb.save('人脸识别excel.xls')# 加载模型
classfier = cv2.CascadeClassifier('D:\hello_world\pythonProject\haarcascade_frontalface_default.xml')
create = cv2.face_LBPHFaceRecognizer.create()
create.read('trainer.yml')# 定义变量
font = cv2.FONT_ITALIC
starttime = time.time()
ID = ('UNKNOW')
name = ('UNKNOW')
count = 0# 从表格中获取学号、姓名,与识别结果比对
workbook = xlrd.open_workbook('人脸识别excel.xls')
worksheet = workbook.sheet_by_index(0)
stu_id = worksheet.col_values(1)
stu_name = worksheet.col_values(2)
print(stu_id)
print(stu_name)# 打开摄像头
capture = cv2.VideoCapture(0)
while capture.isOpened():kk = cv2.waitKey(1)_, farme = capture.read()gray = cv2.cvtColor(farme, cv2.COLOR_BGR2GRAY)faces = classfier.detectMultiScale(gray,1.2,5)if len(faces) != 0:for x, y, w, h in faces:cv2.rectangle(farme, (x,y), (x+w, y+h), (180, 120, 220), 2)gray1 = gray[y:y+h, x:x+w]label, conf = create.predict(gray1)print(label, conf)if conf < 50:index = [list for list, i in enumerate(stu_id)if i==str(label)]print(index)ID = (str(label))name = stu_name[index[0]]print(ID, name)count = count + 1else:ID = ('UNKOWN')cv2.putText(farme, str(ID), (x+w//2-50, y+h+30), font, 1.2, (200, 0, 250), 2)cv2.putText(farme, 'Press "q" to quit', (30, 60), font, 1.2, (200, 0, 250), 2)cv2.imshow('picture from capture.', farme)if kk == ord('q'):breakif count > 30:sign_in(index[0], name)print('学号为:'+str(label)+',姓名为:'+str(name))breakif time.time()-starttime>30:print('超时未识别')break# 关闭所有窗口,释放摄像头
capture.release()
cv2.destroyAllWindows()

操作流程:右键运行’识别人脸’,运行成功后,打开人脸识别签到表.xls查看签到信息.

5. 创建图形界面.py

把上述功能做一个GUI界面,集成显示.
在这里插入图片描述

# 导入库
import tkinter as tk
import os
from PIL import Image, ImageTk#创建采集人脸子函数
def CJRL():os.system('python 采集人脸.py')#创建训练模型子函数
def XL():os.system('python 训练模型.py')#创建识别签到子函数
def SBQD():os.system('python 识别签到.py')#创建签到表
def QDB():os.startfile('人脸识别excel.xls')#关闭窗口
def GB():win.destroy()# 创建窗口
win = tk.Tk()
win.title('人脸识别签到系统')
win.geometry('310x500+800+50')
win.configure(bg='#FF8247')
# tk.Label(win, text="自动化人脸识别", font=('黑体', 20, 'bold'), bg='#00BFFF', fg='white').place(x=10,y=10)# 设置图片以便使用
img = Image.open('D:\hello_world\pythonProject\cat.jpg')
photo = ImageTk.PhotoImage(img)# 大标题
lab1 = tk.Label(win, text="自动化人脸识别", font=('黑体', 20, 'bold'), bg='#00BFFF', fg='white').grid(padx=20, pady=10, sticky=tk.W+tk.E)
# 显示图片
# lab2 = tk.Label(win, image=photo).grid(padx=20, pady=10, sticky=tk.W+tk.E)# 按钮
but1 = tk.Button(win, text='采 集 人 脸 图 片', activebackground='yellow',command=CJRL, font=('黑体', 10, 'bold'), bg='#00BFFF', fg='white').grid(padx=20, pady=10, sticky=tk.W+tk.E)but2 = tk.Button(win, text='训 练 模 型',activebackground='yellow', command=XL, font=('黑体', 10, 'bold'), bg='#00BFFF', fg='white').grid(padx=20, pady=10, sticky=tk.W+tk.E)but3 = tk.Button(win, text='识 别 签 到',activebackground='yellow', command=SBQD, font=('黑体', 10, 'bold'), bg='#00BFFF', fg='white').grid(padx=20, pady=10, sticky=tk.W+tk.E)but4 = tk.Button(win, text='签 到 表', activebackground='yellow',command=QDB, font=('黑体', 10, 'bold'), bg='#00BFFF', fg='white').grid(padx=20, pady=10, sticky=tk.W+tk.E)but5 = tk.Button(win, text='关 闭 窗 口',activebackground='yellow', command=GB, font=('黑体', 10, 'bold'), bg='#00BFFF', fg='white').grid(padx=20, pady=10, sticky=tk.W+tk.E)tk.Label(win, text='学号:1111111111 姓名:iu', bg='white', fg='black',font=('楷体',12)).grid(padx=20, pady=10, sticky=tk.W+tk.E)# tk.Label(win, text='字图一体', image=photo ,compound='bottom', bg='white', fg='black',font=('楷体',12)).grid(padx=20, pady=10, sticky=tk.W+tk.E)win.mainloop()

三、相关函数分析

1.采集人脸

classifier = cv2.CascadeClassifier(r'D:\py-project\pythonProject1\haarcascade_frontalface_default.xml')
  • CascadeClassifier:是OpenCV中的一个类,用于创建和管理级联分类器对象,允许加载一个预先训练好的分类器模型.
  • r’D:\pyproject\pythonProject1\haarcascade_frontalface_default.xml’:绝对路径。
  • haarcascade_frontalface_default.xml:该XML文件包含了用于Haar级联分类器的预训练模型,它是基于Haar特征和AdaBoost算法训练得到的,用于检测人脸
faces = classifier.detectMultiScale(gray, 1.2, 5)
  • detectMultiScale() :用于在给定的灰度图像 gray 中检测对象。它会返回一个包含检测到的对象边界框的列表。每个边界框由 (x, y, width, height) 组成,其中 (x, y) 是矩形左上角的坐标,width 和 height 分别是矩形的宽度和高度.
  • gray:这是输入的灰度图像。级联分类器通常在灰度图像上工作,因为颜色信息对于基于Haar特征的分类器不是必需的.
  • 1.2:scaleFactor 参数,用于构建图像金字塔。图像金字塔是一系列逐渐缩小的图像,用于在不同的尺度上检测对象。scaleFactor 指定了相邻图像之间的缩放比例。较小的 scaleFactor 值意味着金字塔中的图像尺寸减小得更慢,这有助于在不同尺度上更细致地检测对象。
  • 5:这是 minNeighbors 参数,它 指定了在声明找到对象之前,必须在同一个位置重叠检测到的对象的最小数量。较大的 minNeighbors 值可以减少误检,但可能会降低检测的灵敏度。

2.训练模型

create = cv2.face.LBPHFaceRecognizer_create()
  • LBPHFaceRecognizer_create() :OpenCV face 模块中的一个函数,它初始化一个LBPH人脸识别器对象。LBPH是一种基于图像纹理的识别方法,它通过计算局部二值模式的直方图来提取特征,这些特征随后用于人脸的识别.
  • 函数返回一个 LBPHFaceRecognizer 对象,这个对象包含了LBPH算法所需的所有参数和模型。
  • 与 create.train(faces, labels) 结合使用,其中, faces 和 labels 是已经准备好的训练数据和对应的标签
def data_translate(path):# 初始化用于存储面部图像数据的列表face_data = []# 初始化用于存储与面部图像对应的ID的列表(学号)id_data = []# 使用os.path.join(path, f)将路径和文件名组合成完整的文件路径# 列表推导式用于创建包含所有文件完整路径的列表file_list = [os.path.join(path, f) for f in os.listdir(path)]# 遍历file_list中的每个文件路径for file in file_list:# 打开图像文件,并将其转换为灰度图像'L'模式PIL_image = Image.open(file).convert('L')# 转换为NumPy数组,数据类型为"uint8"np_image = np.array(PIL_image, "uint8")# 提取文件名中的ID部分,文件名中第一个'.'之后,第二个'.'之前的部分id = int(file.split('.')[1])# 将转换后的图像数组添加到face_data列表face_data.append(np_image)# 将提取的ID添加到id_data列表id_data.append(id)# 返回包含面部图像数据和对应ID的两个列表return face_data, id_data

3.识别签到

style0 =xlwt.easyxf('font:height 300,bold on,color_index black', num_format_str= 'MM:DD HH:MM')
  • xlwt.easyxf():函数用于创建一个Excel单元格样式对象,这个对象包含了一系列的格式化设置,可以应用于一个或多个单元格.
  • font:height 300 :设置字体大小为300,这通常对应于Excel中的11号字体.
  • bold on: 表示文本加粗.
  • color_index black :设置文本颜色为黑色。color_index是一个索引,用于指定Excel调色板中的颜色
  • num_format_str= ‘MM:DD HH:MM’:指定日期和时间应该以月-日 时:分的格式显示.
for x, y, w, h in faces:# 在图像farme上绘制矩形框,框住检测到的人脸区域# 参数(x, y)是矩形左上角的坐标,(x+w, y+h)是矩形右下角的坐标(注:坐标系在左上角)# (180, 120, 220)是矩形的颜色(BGR格式),2是线条的粗细cv2.rectangle(farme, (x, y), (x+w, y+h), (180, 120, 220), 2)# 从灰度图像gray中截取人脸区域,坐标(x, y)是人脸左上角,宽高为w和hgray1 = gray[y:y+h, x:x+w]# 使用人脸识别器create预测截取的人脸区域gray1的身份和置信度,前面create已经read过训练好的yml文件label, conf = create.predict(gray1)# 打印预测的标签(身份ID)和置信度print(label, conf)# 如果置信度小于50,认为识别结果比较可信if conf < 50:# 尝试找到与预测标签(create检测出的label)匹配的学生ID(excel表格中的stu_id),二者本质上都是学号.index = [list for list, i in enumerate(stu_id) if i == str(label)]print(index)# 假设index列表中有匹配的ID,把其转化为字符串格式,取出对应的学生姓名,生成表格.py生成excel默认是字符串格式(如不是,在单元格前+‘按回车)ID = (str(label))name = stu_name[index[0]]print(ID, name)# 对识别成功的人脸数量进行计数count = count + 1else:# 如果置信度大于或等于50,认为识别结果不可信,标记为未知ID = ('UNKNOWN')

4.创建图形界面

lab1 = tk.Label(win, text="自动化人脸识别", font=('黑体', 20, 'bold'), bg='#00BFFF', fg='white').grid(padx=20, pady=10, sticky=tk.W+tk.E)
  • tk.Label :是 tkinter 模块中的一个函数,用于创建一个标签(Label)组件,用于显示文本或图像,但不能包含用户交互元素,如按钮或输入框.
  • win:GUI窗口
  • text=“自动化人脸识别”:添加文本信息.
  • font=(‘黑体’, 20, ‘bold’):这个参数定义了标签文本的字体样式,包括字体(黑体),大小(20),以及加粗(bold).
  • bg=‘#00BFFF’:这个参数设置了标签的背景颜色,这里使用了十六进制颜色代码,表示浅蓝色.
    fg=‘white’:这个参数设置了标签文本的前景颜色(其实就是字体颜色),这里是白色.
  • .grid(…):这是 Label 组件的 grid 方法,用于将标签放置在父容器win窗口的网格布局中。
    (1)padx=20:这个参数设置了组件在窗口水平方向上的填充(外边距),这里是 20 像素。
    (2)pady=10:这个参数设置了组件在窗口垂直方向上的填充(外边距),这里是 10 像素。
    (3)sticky=tk.W+tk.E:这个参数定义了组件如何 “粘附” 到其网格单元格的边缘。这里 tk.W 表示西(左),tk.E 表示东(右),所以标签将填充整个单元格的宽度,从左到右。
but1 = tk.Button(win, text='采 集 人 脸 图 片', activebackground='yellow',command=CJRL, font=('黑体', 10, 'bold'), bg='#00BFFF', fg='white').grid(padx=20, pady=10, sticky=tk.W+tk.E)

but1参数大体上与lab1相同,此处仅简要说明activebackground=‘yellow’,其用于设置组件在被激活(active)状态下的背景颜色,即当组件获得焦点或者用户与之交互时(例如,鼠标悬停或点击),组件会进入激活状态。此处为点击按钮变黄.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/333923.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【二叉树】非递归实现前中后序遍历

目录 前言 算法思想 非递归实现前序遍历 过程分析 代码 非递归实现中序遍历 过程分析 代码 非递归实现后序遍历 过程分析 代码 前言 1&#xff09;前序&#xff1a;根 左子树 右子树 2&#xff09;中序&#xff1a;左子树 根 右子树 3&#xff09;后序&#xff1…

使用Python类的构造函数和析构函数

1、问题背景 当使用Python类时&#xff0c;可以使用构造函数和析构函数来初始化和清理类实例。构造函数在创建类实例时自动调用&#xff0c;而析构函数在删除类实例时自动调用。 在上面的代码示例中&#xff0c;Person类具有一个构造函数__init__和一个析构函数__del__。构造…

深度学习-序列模型

深度学习-序列模型 1. 定义2. 应用领域3. 典型模型4. 技术细节5. 总结 序列模型是一种处理序列数据的机器学习模型&#xff0c;其输入和/或输出通常为序列形式的数据。以下是关于序列模型的详细解释&#xff1a; 1. 定义 序列模型是输入输出均为序列数据的模型&#xff0c;它…

宝塔:如何在宝塔面板做301重定向

如何在宝塔面板做301重定向?301重定向对于网站来说非常重要。如果你的网站以www开头&#xff0c;我们应该把没有www的域名重定向到有www的域名&#xff0c;反之亦然。 1、我们进入宝塔管理后台 2、登录面板并单击添加站点。既然要把xxx.com 301发到www.xxx.com&#xff0c;我…

R18 NTN中的RACH-less HO

在看R18 38.300时,发现NTN场景 增加了如下黄色字体的内容,R18 NTN支持了RACH-less HO,索性就简单看了看。 NTN RACH less HO相关的描述主要在38.331,38.213和38.321中。38.300中的描述显示:网络侧会通过RRCReconfiguration消息将RACH-less HO相关的配置下发给UE, 其中会包…

迈向F5G-A,开启全光万兆新时代——南通移动完成全市首个50G-PON技术验证

近日&#xff0c;南通移动在崇川区完成全市首个50G-PON万兆技术现网验证&#xff0c;标志着南通成为首批具备F5G-A(The 5th GenerationFixed Network-advanced)的万兆光网城市&#xff0c;使其成为网速最快、覆盖最全、时延最低的城市之一。 作为全光万兆的关键技术&#xff0c…

Linux: network: TCP: zero window size/window full 示例

最近遇到一个问题,当前机器的CPU使用率非常高,然后导致其中一个程序处理socket的数据过慢,然后出现下面的zero的示例。 下面是在接收buff用光的时候,发出的 TCP zeroWindows的消息 这种问题就是内存,CPU,网速之间的性能取舍。具体解决的话,需要看具体的需要是什么样的?…

2024 年 5 个 GO REST API 框架

什么是API&#xff1f; API是一个软件解决方案&#xff0c;作为中介&#xff0c;使两个应用程序能够相互交互。以下一些特征让API变得更加有用和有价值&#xff1a; 遵守REST和HTTP等易于访问、广泛理解和开发人员友好的标准。API不仅仅是几行代码&#xff1b;这些是为移动开…

优思学院:质量工程师必备技能清单,你具备了吗?

想要了解质量工程师需要具备哪些技能和知识&#xff0c;最直接且实际的方法就是分析招聘广告中的关键词&#xff0c;这比道听途说更加有效。为此&#xff0c;优思学院搜集了大量关于质量工程师职位的招聘信息&#xff0c;并为大家进行详细分析。我们通常选择中高级职位进行分析…

机器人运动轨迹学习——GMM/GMR算法

机器人运动轨迹学习——GMM/GMR算法 前置知识 GMM的英文全称为&#xff1a;Gaussian mixture model&#xff0c;即高斯混合模型&#xff0c;也就是说&#xff0c;它是由多个高斯模型进行混合的结果&#xff1a;当然&#xff0c;这里的混合是带有权重概念的。 一维高斯分布 GMM中…

简化跨网文件传输摆渡过程,降低IT人员工作量

在当今数字化时代&#xff0c;IT企业面临着日益增长的数据交换需求。随着网络安全威胁的不断演变&#xff0c;网关隔离成为了保护企业内部网络不受外部威胁的重要手段。然而&#xff0c;隔离的同时&#xff0c;企业也需要在不同网络间安全、高效地传输文件&#xff0c;这就催生…

mybatisplus填充公共字段MetaObjectHandler后不生效解决方式

import com.baomidou.mybatisplus.core.handlers.MetaObjectHandler; import org.apache.ibatis.reflection.MetaObject; import org.springframework.context.annotation.Primary; import org.springframework.stereotype.Component;import java.util.Date;/*** 拦截处理公共字…

芋道源码 / yudao-cloud:前端技术架构探索与实践

摘要&#xff1a; 随着企业信息化建设的深入&#xff0c;后台管理系统在企业运营中扮演着至关重要的角色。本文将以芋道源码的yudao-cloud项目为例&#xff0c;深入探讨其前端技术架构的设计思路、关键技术与实现细节&#xff0c;并分享在开发过程中遇到的挑战与解决方案。 一、…

经典神经网络(9)VAE模型原理及其在MNIST数据集上的应用

经典神经网络(9)VAE模型原理及其在MNIST数据集上的应用 图片生成领域来说&#xff0c;有四大主流生成模型&#xff1a;生成对抗模型&#xff08;GAN&#xff09;、变分自动编码器&#xff08;VAE&#xff09;、流模型&#xff08;Flow based Model&#xff09;、扩散模型&#…

【智能家居入门1】环境信息监测(STM32、ONENET云平台、微信小程序、HTTP协议)

作为入门本篇只实现微信小程序接收下位机上传的数据&#xff0c;之后会持续发布如下项目&#xff1a;①可以实现微信小程序控制下位机动作&#xff0c;真正意义上的智能家居&#xff1b;②将网络通讯协议换成MQTT协议再实现上述功能&#xff0c;此时的服务器也不再是ONENET&…

数据结构—队列(C语言实现)

文章目录 前言一、队列的概念二、队列的实现Queue.hQueue.c 三、设计循环队列问题数组实现链表实现 总结 前言 嗨喽喽&#xff01;&#xff01;小伙伴们&#xff0c;大家好哇&#xff0c;欢迎来到我的博客&#xff01; 今天将要分享的是另一种数据结构—队列&#xff0c;以及…

五分钟搭建一个Suno AI音乐站点

五分钟搭建一个Suno AI音乐站点 在这个数字化时代&#xff0c;人工智能技术正以惊人的速度改变着我们的生活方式和创造方式。音乐作为一种最直接、最感性的艺术形式&#xff0c;自然也成为了人工智能技术的应用场景之一。今天&#xff0c;我们将以Vue和Node.js为基础&#xff…

MySQL触发器实战:自动执行的秘密

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 &#x1f38f;&#xff1a;你只管努力&#xff0c;剩下的交给时间 &#x1f3e0; &#xff1a;小破站 MySQL触发器实战&#xff1a;自动执行的秘密 前言触发器的定义和作用触发器的定义和作用触发器的…

leetCode.82. 删除排序链表中的重复元素 II

leetCode.82. 删除排序链表中的重复元素 II 题目思路&#xff1a; 代码 class Solution { public:ListNode* deleteDuplicates(ListNode* head) {auto dummy new ListNode(-1);dummy->next head;auto p dummy;while(p->next){auto q p->next->next;while(q …

插件“猫抓”使用方法 - 浏览器下载m3u8视频 - 合并 - 视频检测下载 - 网课下载神器

前言 浏览器下载m3u8视频 - 合并 - 网课下载神器 chrome插件-猫抓 https://chrome.zzzmh.cn/info/jfedfbgedapdagkghmgibemcoggfppbb 步骤&#xff1a; P.s. 推荐大佬的学习视频&#xff01; 《WEB前端大师课》超级棒&#xff01; https://ke.qq.com/course/5892689#term_id…