【传知代码】自监督高效图像去噪(论文复现)

前言:在数字化时代,图像已成为我们生活、工作和学习的重要组成部分。然而,随着图像获取方式的多样化,图像质量问题也逐渐凸显出来。噪声,作为影响图像质量的关键因素之一,不仅会降低图像的视觉效果,还可能影响图像分析、处理和识别的准确性。因此,图像去噪技术一直是计算机视觉领域的研究热点。

本文所涉及所有资源均在传知代码平台可获取

目录

概述

演示效果

核心代码

写在最后


概述

        随着深度学习的发展,各种图像去噪方法的性能不断提升。然而,目前的工作大多需要高昂的计算成本或对噪声模型的假设。为解决这个问题,该论文提出了一种自监督学习方法。该方法使用一个简单的两层卷积神经网络和噪声到噪声损失(Noise to Noise Loss),在只使用一张测试图像作为训练样本的情况下,实现了低成本高质量的图像去噪,本文复现一篇 论文 相关内容,该论文提出的方法主要包含三个部分:成对下采样、残差损失、一致性损失。

        该成对下采样器将原始图像下采样为长宽只有原先一半的子图。具体地,其通过将图像分割为大小为 2 × 2 的非重叠补丁,并将每个补丁的对角线像素取平均值并分配给第一个子图,然后将反对角线像素取平均值并分配给第二个子图像。该成对下采样器的示意图如下所示:

在非自监督的情况下,损失函数一般采用噪声图像与干净图像之间平方差的形式:

在自监督的情况下,没有干净图像作为训练目标,则可以将两张噪声图像子图互为训练目标,即噪声到噪声损失:

基于噪声独立性假设,可以证明这两种损失的期望值相同。

考虑到残差损失只使用了噪声图像子图训练模型,而测试时需要整张噪声图像作为输入,为了使网络对子图的噪声估计与对原图的噪声估计保持一致,作者还引入了一个一致性损失函数:

总的损失如下所示:

演示效果

进入工作目录。如果是Linux系统,请使用如下命令:

unzip Image_Denoising.zip
cd Image_Denoising

代码的运行环境可通过如下命令进行配置:

pip install -r requirements.txt

如果希望在本地运行程序,请运行如下命令:

python main.py

如果希望在线部署,请运行如下命令:

python main-flask.py

如果希望使用自己的文件路径或改动其他实验设置,请在文件config.json中修改对应参数。以下是参数含义对照表:

参数名含义
image输入的原始图像路径,默认为"dog.jpg",即我提供的样例
learning_rate学习率
epoch_count训练轮数
step_size学习率衰减周期
gamma学习率衰减比
degree噪声程度,默认为0.2,范围是0~1
max_bytes输入文件大小限制,默认为10240,即10KB,仅用于在线部署限制输入

配置环境并运行main.py脚本,效果如下:

核心代码

这段代码实现了一个用于图像去噪的神经网络模型的训练过程,主要包括以下几个部分:

1)下采样函数 diag_sample:该函数用于将输入的图像下采样成两张长宽只有原先一半的子图。首先将输入图像分割成2x2的补丁,然后对每个补丁提取出对角线元素平均值作为第一个子图,提取出反对角线元素平均值作为第二个子图。

2)噪声估计网络 NoisePredictor:这是一个用于估计图像噪声的神经网络模型。它包括若干个卷积层和激活函数,最终输出与输入图像通道数相同的图像,用于表示估计的图像噪声。

3)训练函数 train_once:该函数用于对噪声估计网络进行一轮训练。在训练过程中,通过下采样函数得到噪声图像的子图,然后利用噪声估计网络估计子图的干净图像,计算残差损失和一致性损失,并根据总损失进行梯度反向传播和模型参数更新。

4)加噪函数 add_noise:该函数接受一个图像和噪声程度,输出加入噪声后的图像。在这里使用了正态分布生成随机噪声,并将噪声加到输入图像上,最后通过 clip 函数将像素值限制在 0 到 1 之间。

这些部分共同构成了图像去噪神经网络模型的训练流程,代码如下:

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as npdef diag_sample(image):'''下采样函数,输入图像,输出两张长宽只有原先一半的子图'''# 分割成2x2的补丁height = int(image.shape[2] / 2)width = int(image.shape[3] / 2)image_patch = image[:, :, 0: height * 2, 0: width * 2].view(image.shape[0], image.shape[1], height, 2, width, 2).permute(0, 1, 2, 4, 3, 5)# 对角线元素取平均作为第一个子图image_sub1 = (image_patch[:, :, :, :, 0, 0] +image_patch[:, :, :, :, 1, 1]) / 2# 反对角线元素取平均作为第二个子图image_sub2 = (image_patch[:, :, :, :, 0, 1] +image_patch[:, :, :, :, 1, 0]) / 2return image_sub1, image_sub2class NoisePredictor(nn.Module):'''噪声估计网络,输入图像,输出估计的图像噪声'''def __init__(self, channels=3):super(NoisePredictor, self).__init__()self.net = nn.Sequential(nn.Conv2d(channels, 52, 3, padding=1),nn.LeakyReLU(negative_slope=0.2, inplace=True),nn.Conv2d(52, 52, 3, padding = 1),nn.LeakyReLU(negative_slope=0.2, inplace=True),nn.Conv2d(52, channels, 1))def forward(self, x):return self.net(x)def train_once(image_noise, model, optimizer):'''对模型进行一轮训练'''# 用于计算差方和mse_loss = nn.MSELoss(reduction='sum')model.train()optimizer.zero_grad()# 生成噪声的子图image_noise_s1, image_noise_s2 = diag_sample(image_noise)# 估计噪声图像子图的干净图像image_s1_clean = image_noise_s1 - model(image_noise_s1)image_s2_clean = image_noise_s2 - model(image_noise_s2)# 估计噪声图像的干净图像image_clean = image_noise - model(image_noise)# 生成噪声图像的干净图像的子图image_clean_s1, image_clean_s2 = diag_sample(image_clean)# 残差损失loss_res = (mse_loss(image_s1_clean, image_noise_s2) + mse_loss(image_s2_clean, image_noise_s1)) / 2# 一致性损失loss_con = (mse_loss(image_s1_clean, image_clean_s1) + mse_loss(image_s2_clean, image_clean_s2)) / 2# 总损失loss = loss_res + loss_con# 梯度反向传播loss.backward()# 更新模型参数optimizer.step()def add_noise(image, degree):'''输入图像和噪声程度(0~1),输出加入噪声的图像'''noise = np.random.normal(0, degree, image.shape)noisy_image = np.clip(image + noise, 0, 1)return noisy_image

写在最后

        在探索自监督高效图像去噪的旅程中,我们见证了技术的飞速进步与无限潜力。通过深度学习技术的赋能,自监督学习在图像去噪领域展现出了卓越的成效。这种方法不仅避免了大量标记数据的依赖,还通过内部生成的信息进行训练,大幅提高了模型的学习效率和泛化能力,随着技术的不断发展和优化,我们有理由相信自监督高效图像去噪将在更多领域展现出其独特的价值。我们期待看到更多创新性的研究和应用,让这项技术为人类社会带来更多的福祉和进步。在这个充满挑战和机遇的时代,让我们共同期待并见证这一技术的美好未来。

详细复现过程的项目源码、数据和预训练好的模型可从该文章下方附件获取。

【传知科技】关注有礼     公众号、抖音号、视频号

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/335497.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

牛客NC367 第K个n的排列【困难 dfs,全排列问题 Java/Go/PHP/C++】

题目 题目链接: https://www.nowcoder.com/practice/1595969179464e4c940a90b36abb3c54 思路 全排列问题本文提供的答案在力扣同一道题60. 排列序列,超时了但是截止文章发表日,牛客上是能通过全部测试用例的Java代码 import java.util.*;pu…

【漏洞复现】大华智能物联综合管理平台 fastjson远程代码执行漏洞

0x01 产品简介 大华ICC智能物联综合管理平台对技术组件进行模块化和松耦合,将解决方案分层分级,提高面向智慧物联的数据接入与生态合作能力。 0x02 漏洞概述 由于大华智能物联综合管理平台使用了存在漏洞的Fastson组件,未经身份验让的攻击者可利用 /e…

Qt 基于FFmpeg的视频转换器 - 转GIF动图

Qt 基于FFmpeg的视频转换器 - 转GIF动图 引言一、设计思路二、核心源码三、参考链接 引言 gif格式的动图可以通过连续播放一系列图像或视频片段来展示动态效果,使信息更加生动形象,可以很方便的嵌入到网页或者ppt中。上图展示了视频的前几帧转为gif动图的…

深入解析 JSONPath:从入门到精通

码到三十五 : 个人主页 在数据处理和交换领域,JSON已经成为了一种广泛使用的数据格式, 如何有效地查询和操作这些数据也变得越来越重要。在这种情况下,JSONPath 应运而生,成为了一种在JSON数据中定位和提取信息的强大工…

【PingPong_注册安全分析报告】

前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞 …

(超详细)字符函数和字符串函数【上】

前言 C 语言中对字符和字符串的处理很是频繁,但是 C 语言本身是没有字符串类型的,字符串通常放在 常量字符串 中或者 字符数组 中。 字符串常量 适用于那些对它不做修改的字符串函数 . 1.求字符串长度函数 strlen函数 我们要求一个字符串函数的长度…

树--搜索二叉树

现有一棵结点数目为n的二叉树,采用二叉链表的形式存储。对于每个结点均有指向左右孩子的两个指针域,而结点为n的二叉树一共有n-1条有效分支路径。那么,则二叉链表中存在2n-(n-1)n1个空指针域。那么,这些空指针造成了空间浪费。 例…

通过vlan实现同一网段下的网络隔离

现有两个电脑通过交换机直接连接在一起 pc1&#xff1a; pc2&#xff1a; 正常状态下是可以ping成功的 现在先进入交换机命令行界面&#xff0c;创建两个vlan <Huawei>system-view Enter system view, return user view with CtrlZ. [Huawei]vlan 10 [Huawei-vlan10…

python基础知识总结(第一节)

一、python简介&#xff1a; Python是一种解释型&#xff0c;面向对象的高级语言。 Pyhton的语法和动态类型&#xff0c;以及解释性语言的本质&#xff0c;使它一跃成为多数平台上写脚本和快速开发应用的编程语言。 python语言百度百科介绍 二、Python基础语法&#xff1a;…

交换机的三层交换技术

现有pc1与pc2不在同一个网段之下&#xff0c;通过交换机相连接。 进人交换机1&#xff0c;创建两个vlan 10和vlan 20 &#xff0c;进入串口2设置串口模式为access&#xff0c;并且设置默认vlan为10.进入串口3设置串口模式为access&#xff0c;并且设置默认vlan为20. 进入串口1…

操作系统真象还原:完善MBR

第3章-完善MBR 这是一个网站有所有小节的代码实现&#xff0c;同时也包含了Bochs等文件 编译器给程序中各符号&#xff08;变量名或函数名等&#xff09;分配的地址&#xff0c;就是各符号相对于文件开头的偏移量 。 section 称为节&#xff0c;在有的编译器中&#xff0c;同…

做视频号小店和达人对接的好,爆单少不了!

大家好&#xff0c;我是喷火龙。 目前&#xff0c;视频号是没有什么自然流量的&#xff0c;所以&#xff0c;想要出单、爆单的话&#xff0c;靠达人带货的方式才是最可靠的&#xff0c;靠达人带货是肯定要对接达人&#xff0c;并和达人沟通带货的。 下面给大家讲一讲应该怎么…

【Python】解决Python报错:TypeError: unsupported operand type(s) for ...

&#x1f9d1; 博主简介&#xff1a;阿里巴巴嵌入式技术专家&#xff0c;深耕嵌入式人工智能领域&#xff0c;具备多年的嵌入式硬件产品研发管理经验。 &#x1f4d2; 博客介绍&#xff1a;分享嵌入式开发领域的相关知识、经验、思考和感悟&#xff0c;欢迎关注。提供嵌入式方向…

Kafka原生API使用Java代码-生产者-分区策略-默认分区策略轮询分区策略

文章目录 1、代码演示1.1、pom.xml1.2、KafkaProducerPartitioningStrategy.java1.2.1、ProducerConfig.LINGER_MS_CONFIG取 0 值得情况&#xff0c;不轮询1.2.2、ProducerConfig.LINGER_MS_CONFIG取 0 值得情况&#xff0c;轮询1.2.3、ProducerConfig.LINGER_MS_CONFIG取 1000…

前端应用开发实验:表单控件绑定

目录 实验目的相关知识点实验内容代码实现效果 实验目的 &#xff08;1&#xff09;熟练掌握应用v-model指令实现双向数据绑定的方法&#xff0c;学会使用 v-model指令绑定文本框、复选框、单选按钮、下拉菜单&#xff1b; &#xff08;2&#xff09;学会值绑定&#xff08;将…

Java枚举

引入&#xff1a; 当有一些类&#xff0c;希望它的成员的值是具体的有限的值&#xff0c;且只读不需要修改&#xff0c;不希望用户去自定义其他的值。 比如季节类&#xff0c;它的成员只能是春夏秋冬&#xff0c;不希望用户构造其他的值。 枚举enum&#xff1a; 枚举是一组的特…

SQL数据库多层嵌套 json转sql建表语句,SQL数据库里数组里对象数据怎么创建

1. uniapp sqlite 一个数组包含对象嵌套对象通过主外键方式插入数据库&#xff1a; // 假设有一个对象数组&#xff0c;对象中包含嵌套对象 const objectsArray [{parentObject: {id: 1,name: Parent 1,// 其他父对象属性},childObject: {id: 11,parentId: 1,name: Child 1 o…

字符串操作:写一个方法,实现字符串的反转,如:输入abc,输出cba

import java.util.Scanner; public class Test_A15 {public static void main(String[] args){String strA"";System.out.println("请输入一串字符串:");Scanner scannernew Scanner(System.in);strAscanner.next();Test_A15 T15new Test_A15();String re…

使用 LangFuse 意外被挂马!我是怎么恢复系统稳定的?

在使用 LangFuse 过程中,被意外挂马!通过一番折腾服务恢复正常~ 本文将详细介绍应对恶意脚本和进程的完整方案,包括识别、清理、恢复和预防步骤。 阿里云扫到的信息 被执行的 Base64 SUlaQnRTCmV4ZWMgJj4vZGV2L251bGwKSUhDa0hQbmQ9Li8uJChkYXRlfG1kNXN1bXxoZWFkIC1jMjApCl…

AI Agent智能体概述及原理

AI Agent概述 AI Agent旨在理解、分析和响应人类输入&#xff0c;像人类一样执行任务、做出决策并与环境互动。它们可以是遵循预定义规则的简单系统&#xff0c;也可以是根据经验学习和适应的复杂、自主的实体&#xff1b;可以是基于软件的实体&#xff0c;也可以是物理实体。…