【刷题(12)】图论

一、图论问题基础

在 LeetCode 中,「岛屿问题」是一个系列系列问题,比如:

  • 岛屿数量 (Easy)
  • 岛屿的周长 (Easy)
  • 岛屿的最大面积 (Medium)
  • 最大人工岛 (Hard)
    我们所熟悉的 DFS(深度优先搜索)问题通常是在树或者图结构上进行的。而我们今天要讨论的 DFS 问题,是在一种「网格」结构中进行的。岛屿问题是这类网格 DFS 问题的典型代表。网格结构遍历起来要比二叉树复杂一些,如果没有掌握一定的方法,DFS 代码容易写得冗长繁杂。

网格类问题的 DFS 遍历方法
网格问题的基本概念
我们首先明确一下岛屿问题中的网格结构是如何定义的,以方便我们后面的讨论。

网格问题是由 m×nm \times nm×n 个小方格组成一个网格,每个小方格与其上下左右四个方格认为是相邻的,要在这样的网格上进行某种搜索。

岛屿问题是一类典型的网格问题。每个格子中的数字可能是 0 或者 1。我们把数字为 0 的格子看成海洋格子,数字为 1 的格子看成陆地格子,这样相邻的陆地格子就连接成一个岛屿。
在这里插入图片描述
DFS 的基本结构
网格结构要比二叉树结构稍微复杂一些,它其实是一种简化版的图结构。要写好网格上的 DFS 遍历,我们首先要理解二叉树上的 DFS 遍历方法,再类比写出网格结构上的 DFS 遍历。我们写的二叉树 DFS 遍历一般是这样的:

void traverse(TreeNode root) {// 判断 base caseif (root == null) {return;}// 访问两个相邻结点:左子结点、右子结点traverse(root.left);traverse(root.right);
}

可以看到,二叉树的 DFS 有两个要素:「访问相邻结点」和「判断 base case」。

第一个要素是访问相邻结点。二叉树的相邻结点非常简单,只有左子结点和右子结点两个。二叉树本身就是一个递归定义的结构:一棵二叉树,它的左子树和右子树也是一棵二叉树。那么我们的 DFS 遍历只需要递归调用左子树和右子树即可。

第二个要素是 判断 base case。一般来说,二叉树遍历的 base case 是 root == null。这样一个条件判断其实有两个含义:一方面,这表示 root 指向的子树为空,不需要再往下遍历了。另一方面,在 root == null 的时候及时返回,可以让后面的 root.left 和 root.right 操作不会出现空指针异常。

对于网格上的 DFS,我们完全可以参考二叉树的 DFS,写出网格 DFS 的两个要素:

首先,网格结构中的格子有多少相邻结点?答案是上下左右四个。对于格子 (r, c) 来说(r 和 c 分别代表行坐标和列坐标),四个相邻的格子分别是 (r-1, c)、(r+1, c)、(r, c-1)、(r, c+1)。换句话说,网格结构是「四叉」的。
在这里插入图片描述
其次,网格 DFS 中的 base case 是什么?从二叉树的 base case 对应过来,应该是网格中不需要继续遍历、grid[r][c] 会出现数组下标越界异常的格子,也就是那些超出网格范围的格子。
在这里插入图片描述
这一点稍微有些反直觉,坐标竟然可以临时超出网格的范围?这种方法我称为「先污染后治理」—— 甭管当前是在哪个格子,先往四个方向走一步再说,如果发现走出了网格范围再赶紧返回。这跟二叉树的遍历方法是一样的,先递归调用,发现 root == null 再返回。

这样,我们得到了网格 DFS 遍历的框架代码:

void dfs(int[][] grid, int r, int c) {// 判断 base case// 如果坐标 (r, c) 超出了网格范围,直接返回if (!inArea(grid, r, c)) {return;}// 访问上、下、左、右四个相邻结点dfs(grid, r - 1, c);dfs(grid, r + 1, c);dfs(grid, r, c - 1);dfs(grid, r, c + 1);
}// 判断坐标 (r, c) 是否在网格中
boolean inArea(int[][] grid, int r, int c) {return 0 <= r && r < grid.length && 0 <= c && c < grid[0].length;
}

如何避免重复遍历
网格结构的 DFS 与二叉树的 DFS 最大的不同之处在于,遍历中可能遇到遍历过的结点。这是因为,网格结构本质上是一个「图」,我们可以把每个格子看成图中的结点,每个结点有向上下左右的四条边。在图中遍历时,自然可能遇到重复遍历结点。

这时候,DFS 可能会不停地「兜圈子」,永远停不下来,如下图所示:

在这里插入图片描述
如何避免这样的重复遍历呢?答案是标记已经遍历过的格子。以岛屿问题为例,我们需要在所有值为 1 的陆地格子上做 DFS 遍历。每走过一个陆地格子,就把格子的值改为 2,这样当我们遇到 2 的时候,就知道这是遍历过的格子了。也就是说,每个格子可能取三个值:

0 —— 海洋格子
1 —— 陆地格子(未遍历过)
2 —— 陆地格子(已遍历过)
我们在框架代码中加入避免重复遍历的语句:

void dfs(int[][] grid, int r, int c) {// 判断 base caseif (!inArea(grid, r, c)) {return;}// 如果这个格子不是岛屿,直接返回if (grid[r][c] != 1) {return;}grid[r][c] = 2; // 将格子标记为「已遍历过」// 访问上、下、左、右四个相邻结点dfs(grid, r - 1, c);dfs(grid, r + 1, c);dfs(grid, r, c - 1);dfs(grid, r, c + 1);
}// 判断坐标 (r, c) 是否在网格中
boolean inArea(int[][] grid, int r, int c) {return 0 <= r && r < grid.length && 0 <= c && c < grid[0].length;
}

在这里插入图片描述
这样,我们就得到了一个岛屿问题、乃至各种网格问题的通用 DFS 遍历方法。以下所讲的几个例题,其实都只需要在 DFS 遍历框架上稍加修改而已。

小贴士:
在一些题解中,可能会把「已遍历过的陆地格子」标记为和海洋格子一样的 0,美其名曰「陆地沉没方法」,即遍历完一个陆地格子就让陆地「沉没」为海洋。这种方法看似很巧妙,但实际上有很大隐患,因为这样我们就无法区分「海洋格子」和「已遍历过的陆地格子」了。如果题目更复杂一点,这很容易出 bug。

二、200. 岛屿数量

1 题目

在这里插入图片描述

2 解题思路

(1)网格问题其实是一种特殊的四叉树,我们可以使用DFS,BFS来解这道题。
(2)使用‘2’或’0’来标记已经遍历过的陆地。

3 code

class Solution {
public:int rowCount;int colCount;int numIslands(vector<vector<char>>& grid) {this->rowCount = grid.size();this->colCount = grid[0].size();// 用来记录岛屿数量int num_islands = 0;for (int row = 0; row < rowCount; row++) {for (int col = 0; col < colCount; col++) {// 如果当前位置是岛屿的一部分if (grid[row][col] == '1') {// 岛屿数量增加num_islands++;// 从当前位置开始执行DFS, 标记整个岛屿DFS(grid, row, col);}}}return num_islands;}void DFS(vector<vector<char>>& grid, int row, int col) {// 将当前位置标记为'0', 表示已访问grid[row][col] = '2';// 检查并递归访问当前点的上下左右四个相邻点if (row - 1 >= 0 && grid[row - 1][col] == '1') DFS(grid, row - 1, col);if (row + 1 < rowCount && grid[row + 1][col] == '1') DFS(grid, row + 1, col);if (col - 1 >= 0 && grid[row][col - 1] == '1') DFS(grid, row, col - 1);if (col + 1 < colCount && grid[row][col + 1] == '1') DFS(grid, row, col + 1);}
};

三、994. 腐烂的橘子

1 题目

在这里插入图片描述

2 解题思路 广度优先搜索(BFS)

(1)首先分别将腐烂的橘子和新鲜的橘子保存在两个集合中;
(2)模拟广度优先搜索的过程,方法是判断在每个腐烂橘子的四个方向上是否有新鲜橘子,如果有就腐烂它。每腐烂一次时间加 111,并剔除新鲜集合里腐烂的橘子;
(3)当橘子全部腐烂时结束循环。
在这里插入图片描述
注:一般使用如下方法实现四个方向的移动:

# 设初始点为 (i, j)
for di, dj in [(0, 1), (0, -1), (1, 0), (-1, 0)]: # 上、下、左、右i + di, j + dj

3 code

class Solution {int dirt[4][2] = {{-1,0},{1,0},{0,1},{0,-1}};
public:int orangesRotting(vector<vector<int>>& grid) {//记录所需要腐烂的分钟int min = 0;//记录新鲜橘子的数量int fresh = 0;//记录腐烂水果坐标queue<pair<int,int>>que;//遍历地图for(int i = 0;i<grid.size();i++){for(int j = 0;j<grid[0].size();j++){if(grid[i][j]==1){fresh++;}else if (grid[i][j] ==2){que.push({i,j});}}}while(!que.empty()){int n = que.size();bool rotten = false;//遍历队列一层的元素for(int i= 0;i<n;i++){auto x = que.front();   //保存腐烂元素的坐标que.pop();      //出队列for(auto cur: dirt){int i = x.first + cur[0];   //更新x的坐标int j = x.second + cur[1];  //更新y的坐标//向四个方向遍历if(i>=0 && i<grid.size()&&j>=0&&j<grid[0].size()&&grid[i][j]==1){grid[i][j] = 2;     //更新坐标que.push({i,j});    //加入队列fresh--;            //新鲜数量减一rotten = true;      //标记遍历完一层}}}if(rotten) min++; //遍历完一层,记录+1}return fresh ? -1:min;}
};

四、207. 课程表

1 题目

在这里插入图片描述

2 解题思路

(1)题目给的用例不太明显。的另外举例子。输入:3,[ [0,1] , [1,2] , [2,0] ],对于这个用例。我把图画出来。
在这里插入图片描述
按照示例的解释是这样的:总共有 3 门课程。学习课程 2 之前,你需要先完成​课程 0;并且学习课程 0 之前,你还应先完成课程 1。学习课程 1 之前,你需要先完成​课程 2。这是不可能的。
仔细观察就发现,这个图是有向图,并且形成了一个环。(从n点出发,最终还能回到n点),所以返回false
那这个题目就变成了:
判断有向图,是否有环。 有返回false,没有返回true
(2)那我怎么用深度优先遍历(dfs)判断有向图是否有环呢。其实很简单。
如果你写过深度优先搜索遍历。那就很简单了。
拿邻接表来解释深度优先未免有些复杂,我再画一张图
输入:4,[ [0,2], [1,0], [1,3], [3,0] ]
在这里插入图片描述
为了清晰起见,我解释一下dfs的过程。

设置一个visit数组(开节点个数),初始为0,visit =1 表示被访问过了。

我们要对每一个点进行一次深度遍历,看它是否形成环。

对 3 dfs:
visit[3]=0,3没被标记过,标记visit[3]=1, 对3进行dfs,访问和3相连接的所有点(0),
visit[0]=0,0没被标记过,标记visit[0]=1, 对0进行dfs,访问和0相连接的所有点(2),
visit[2]=0,2没被标记过,标记visit[2]=1, 对2进行dfs,访问和2相连接的所有点
(没有和2相连接的点,dfs终止,并没有环,返回true, 开始回溯)

对 2 dfs:…
对 1 dfs:…
对 0 dfs:…

回溯的时候要把visit还原为0。

递归你们都应该清楚,太麻烦就省略了,总之就是访问一个节点,就对它所有相连接的点进行dfs,这个是深度遍历的标准思路。只是加了个标记数组。

性能上的优化:我们可以在回溯的时候,把visit设置为-1,表示这个点之前已经被访问过了,走这点没环。
这样我们进入dfs后,如果visit等于 -1 ,直接返回true。

这个性能优化提速是非常明显的。虽然没优化也能通过。

3 code

class Solution {
public:vector<int>visit;bool dfs(int v,vector<vector<int>>& g){if (g[v].size() == 0)   //没相邻的节点了,返回truereturn true;if (visit[v] == -1)   //走这节点没环,返回truereturn true;if (visit[v] == 1)  //被标记过了,存在环,返回falsereturn false;visit[v] = 1;  //标记bool res = true;for (int i = 0; i < g[v].size(); i++)  //访问v节点的所有相连接的节点,对于每个节点都进行dfs{res = dfs(g[v][i], g);if (res == false)break;}visit[v] =-1 ;  //回溯时设置visit为-1return res;}bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {vector<vector<int>> g(numCourses);visit = vector<int>(numCourses + 1, 0);//建立有向邻接表for (int i = 0; i < prerequisites.size(); i++)g[prerequisites[i][0]].push_back(prerequisites[i][1]);bool res = true;for(int i =0;i<numCourses;i++)  //对每个节的所有相连接的点进行dfs(深度优先遍历)for (int j = 0; j < g[i].size(); j++){res = dfs(g[i][j], g);if (res == false)return res;}return res;}
};

五、208. 实现Trie(前缀树)

1 题目

在这里插入图片描述

2 解题思路

3 code

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/336631.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据库设计:实体关系图

一个良好的设计对于数据库系统至关重要&#xff0c;它可以减少数据冗余&#xff0c;确保数据的一致性和完整性&#xff0c;同时使得数据库易于维护和扩展。 实体关系图&#xff08;Entity-Relationship Diagram、ERD&#xff09;是一种用于数据库设计的结构图&#xff0c;它描…

使用LLaMA-Factory微调大模型

使用LLaMA-Factory微调大模型 github 地址 https://github.com/hiyouga/LLaMA-Factory 搭建环境 git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Factory在 LLaMA-Factory 路径下 创建虚拟环境 conda create -p ./venv python3.10激活环境 c…

arduino + ov7670实现拍照

前言 用一个几块钱的 ov7670 摄像头加 arduino 来进行拍照实现。本文只是实现了模块的拍照功能。没有进行深入的研究&#xff0c;拍出来的视频不是流畅的&#xff0c;大概间隔6s会刷新一次。 图片预览 视频预览 arduino和ov7670实现拍照-哔哩哔哩 材料准备 材料数量价格(r…

北京大学第一医院与智源研究院共同发布基于可信执行环境的AI医学影像挑战赛

肾动脉狭窄是导致继发性高血压及肾功能不全的常见原因&#xff0c;而目前针对肾动脉狭窄功能学的评估尚处于探索阶段。数据保护和可信计算环境是目前人工智能技术应用于临床研究的一大瓶颈。北京大学第一医院与北京智源人工智能研究院心脏AI 联合研究中心特发布基于可信执行环境…

信号与槽函数的魔法:QT 5编程中的核心机制

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、信号与槽函数的基本概念 二、信号与槽函数的实现原理 三、信号与槽函数的代码实例 四…

npm镜像源管理、nvm安装多版本node异常处理

查看当前使用的镜像源 npm config get registry --locationglobal 设置使用官方源 npm config set registry https://registry.npmjs.org/ --locationglobal 设置淘宝镜像源 npm config set registry https://registry.npm.taobao.org/ --locationglobal 需要更改淘宝镜像源地址…

03.k8s常用的资源

3.k8s常用的资源 3.1 创建pod资源 k8s yaml的主要组成 apiVersion: v1 api版本 kind: pod 资源类型 metadata: 属性 spec: 详细上传nginx镜像文件&#xff0c;并且上传私有仓库里面 k8s_pod.yaml apiVersion: v1 kind: Pod metadata:name: nginxlabels:app: we…

自制数据#国家2000投影带划分范围shp(高斯克吕格 3°/6°分带)

国家2000投影分带范围&#xff08;3&#xff09; https://www.123pan.com/s/lqEljv-xvCHA.html 国家2000投影分带范围&#xff08;6&#xff09; https://www.123pan.com/s/lqEljv-xvCHA.html 声明&#xff1a;转载此文不为商业用途。文字和图片版权归原作者所有&#xff0c;…

【Python编程实践2/3】Python图像处理模块(上)

目录 引言 目标 安装模块 Windows系统 macOS系统 路径 Windows路径 ​编辑macOS路径 windows路径报错 windows路径前的r 示例代码 windows快速查看路径 macOS快速查看路径 打开图片 展示图片 下节预告 总结 引言 欢迎各位大佬垂阅本篇Python实践博客&a…

vue-Dialog 自定义title样式

展示结果 vue代码 <el-dialog :title"title" :visible.sync"classifyOpen" width"500px" :showClose"false" class"aboutDialog"> <el-form :model"classifyForm" :rules"classifyRules">…

【赠书第26期】AI绘画教程:Midjourney使用方法与技巧从入门到精通

文章目录 前言 1 Midjourney入门指南 1.1 注册与登录 1.2 界面熟悉 1.3 基础操作 2 Midjourney进阶技巧 2.1 描述词优化 2.2 参数调整 2.3 迭代生成 3 Midjourney高级应用 3.1 创意启发 3.2 团队协作 3.3 商业应用 4 总结与展望 5 推荐图书 6 粉丝福利 前言 在…

自动控制:控制系统的稳定性

自动控制&#xff1a;控制系统的稳定性 在自动控制领域&#xff0c;控制系统的稳定性是一个至关重要的问题。稳定性决定了系统在受到扰动后是否能够恢复到平衡状态。本文将介绍控制系统稳定性的基本概念、如何利用特征值分析稳定性&#xff0c;并通过具体示例和Python代码展示…

【香橙派 AIpro】新手保姆级开箱教程:Linux镜像+vscode远程连接

香橙派 AIpro 开发板 AI 应用部署测评 写在最前面一、开发板概述官方资料试用印象适用场景 二、详细开发前准备步骤1. 环境准备2. 环境搭建3. vscode安装ssh插件4. 香橙派 AIpro 添加连接配置5. 连接香橙派 AIpro6. SSH配置 二、详细开发步骤1. 登录 juypter lab2. 样例运行3. …

基于51单片机的温度+烟雾报警系统设计

一.硬件方案 本设计采用51单片机为核心控制器&#xff0c;利用气体传感器MQ-2、ADC0832模数转换器、DS18B20温度传感器等实现基本功能。通过这些传感器和芯片&#xff0c;当环境中可燃气体浓度或温度等发生变化时系统会发出相应的灯光报警信号和声音报警信号&#xff0c;以此来…

【C语言回顾】预处理

前言1. 简单概要2. 预处理命令讲解结语 上期回顾: 【C语言回顾】编译和链接 个人主页&#xff1a;C_GUIQU 归属专栏&#xff1a;【C语言学习】 前言 各位小伙伴大家好&#xff01;上期小编给大家讲解了C语言中的编译和链接&#xff0c;接下来我们讲解一下预处理&#xff01; …

嘉立创使用gif

新建原理图 边框设置2 新建pcb图 放置焊盘 排列焊盘 新建符号 封号向导 新建封装 封装向导 符号与封装联结 原件查找 drc设计规则&#xff08;线之间的距离等 布线冲突 顶底层切换 T ,B 顶底连线&#xff0c;自动创造过孔 铺铜 泪滴 网格大小 吸附 元件库

【机器学习】Adaboost: 强化弱学习器的自适应提升方法

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 Adaboost: 强化弱学习器的自适应提升方法引言Adaboost基础概念弱学习器与强学习…

C++ vector 模拟实现

vector的底层也是一个动态数组&#xff0c;他与 string 的区别就是&#xff0c;string 是专门用来存储字符类数据的&#xff0c;为了兼容C语言&#xff0c;使用C语言的接口&#xff0c;在string的动态数组内都会都开一块空间用来存 \0 &#xff0c;而vector则不会。 首先我们要…

【Linux】TCP协议【上】{协议段属性:源端口号/目的端口号/序号/确认序号/窗口大小/紧急指针/标记位}

文章目录 1.引入2.协议段格式4位首部长度16位窗口大小32位序号思考三个问题【demo】标记位URG: 紧急指针是否有效提升某报文被处理优先级【0表示不设置1表示设置】ACK: 确认号是否有效PSH: 提示接收端应用程序立刻从TCP缓冲区把数据读走RST: 对方要求重新建立连接; 我们把携带R…

《QT实用小工具·六十八》基于QMenu开发的炫酷菜单栏

1、概述 源码放在文章末尾 该项目基于QMenu实现了炫酷的菜单栏效果&#xff0c;包含了如下功能&#xff1a; 1、实现了类似word菜单栏的效果&#xff0c;可以在菜单栏中横向添加不同的菜单 2、鼠标点击菜单可以展开菜单栏&#xff0c;再次点击菜单可以收起菜单栏 3、鼠标点击笑…