【机器学习】Adaboost: 强化弱学习器的自适应提升方法


鑫宝Code

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"


文章目录

  • Adaboost: 强化弱学习器的自适应提升方法
    • 引言
    • Adaboost基础概念
      • 弱学习器与强学习器
      • Adaboost核心思想
    • Adaboost算法流程
      • 1. 初始化样本权重
      • 2. 迭代训练弱学习器
      • 3. 组合弱学习器
      • 4. 停止准则
    • Adaboost的关键特性
    • 应用场景
    • 实现步骤简述
    • 结语

Adaboost: 强化弱学习器的自适应提升方法

在这里插入图片描述

引言

在机器学习领域,集成学习是一种通过结合多个弱模型以构建更强大预测模型的技术。Adaptive Boosting,简称Adaboost,是集成学习中的一种经典算法,由Yoav Freund和Robert Schapire于1996年提出。Adaboost通过迭代方式,自适应地调整数据样本的权重,使得每个后续的弱学习器更加关注前序学习器表现不佳的样本,以此逐步提高整体预测性能。本文将深入探讨Adaboost的工作原理、算法流程、关键特性、优势及应用场景,并简要介绍其实现步骤。
在这里插入图片描述

Adaboost基础概念

弱学习器与强学习器

  • 弱学习器:指那些仅比随机猜测略好一点的学习算法,如决策树的浅层版本。
  • 强学习器:通过组合多个弱学习器,达到超越任何单个弱学习器性能的算法。

Adaboost核心思想

Adaboost的核心思想是通过改变训练数据的权重分布来不断聚焦于那些难以被正确分类的样本。每一轮迭代中,算法会根据上一轮的错误率调整样本的权重,使得错误分类的样本在下一轮中获得更高的权重,从而引导新生成的弱学习器重点关注这些“困难”样本。

Adaboost算法流程

在这里插入图片描述

Adaboost算法可以分为以下几个步骤:

1. 初始化样本权重

  • 所有训练样本初始权重相等,通常设为 w i ( 1 ) = 1 N w_i^{(1)} = \frac{1}{N} wi(1)=N1,其中 N N N 是样本总数。

2. 迭代训练弱学习器

对于每一轮 t = 1 , 2 , . . . , T t=1,2,...,T t=1,2,...,T

  • 使用当前样本权重分布训练弱学习器 h t h_t ht。弱学习器的目标是最小化加权错误率 ϵ t = ∑ i = 1 N w i ( t ) I ( y i ≠ h t ( x i ) ) \epsilon_t = \sum_{i=1}^{N} w_i^{(t)} I(y_i \neq h_t(x_i)) ϵt=i=1Nwi(t)I(yi=ht(xi)),其中 I I I是指示函数,当条件满足时返回1,否则返回0。
  • 计算弱学习器的权重 α t = 1 2 ln ⁡ ( 1 − ϵ t ϵ t ) \alpha_t = \frac{1}{2} \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right) αt=21ln(ϵt1ϵt),反映了该学习器的重要性。
  • 更新样本权重:对分类正确的样本减小其权重,错误分类的样本增加其权重。具体为 w i ( t + 1 ) = w i ( t ) exp ⁡ ( − α t y i h t ( x i ) ) w_i^{(t+1)} = w_i^{(t)} \exp(-\alpha_t y_i h_t(x_i)) wi(t+1)=wi(t)exp(αtyiht(xi)),然后重新归一化以确保所有权重之和为1。

3. 组合弱学习器

经过T轮迭代后,最终的强学习器为所有弱学习器的加权投票结果: H ( x ) = sign ( ∑ t = 1 T α t h t ( x ) ) H(x) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right) H(x)=sign(t=1Tαtht(x))

4. 停止准则

设定最大迭代次数 T T T作为停止条件,或直到达到预定的性能阈值。

Adaboost的关键特性

  • 自适应性:自动调整数据权重,使算法能够专注于较难分类的样本。
  • 弱学习器的多样性:由于每一轮学习器都针对不同的样本分布进行训练,这促进了弱学习器之间的多样性,有助于提升整体模型的泛化能力。
  • 异常值鲁棒性:通过调整权重,Adaboost能够减少异常值对模型的影响。
  • 过拟合控制:随着迭代增加,若学习器对新数据不再提供显著增益,则权重更新趋于平缓,自然停止学习过程,有助于防止过拟合。

应用场景

Adaboost因其高效和灵活,在多种机器学习任务中展现出广泛的应用潜力,包括但不限于:

  • 分类问题:如手写数字识别、医学图像诊断。
  • 异常检测:通过构建正常行为的强分类器,识别偏离此模型的行为。
  • 特征选择:在预处理阶段,Adaboost可用于评估特征重要性,辅助筛选最有效的特征集。

实现步骤简述

实现Adaboost算法主要包括以下Python伪代码:

# 初始化
weights = np.ones(N) / N
alphas = []
models = []# 迭代T轮
for t in range(T):# 使用当前权重训练弱学习器model = train_weak_learner(X, y, weights)models.append(model)# 计算加权错误率errors = compute_errors(model.predict(X), y)weighted_error = np.sum(weights[errors != 0])# 计算弱学习器权重alpha = 0.5 * np.log((1 - weighted_error) / weighted_error)alphas.append(alpha)# 更新样本权重Z = np.sum(weights * np.exp(-alpha * y * errors))weights *= np.exp(-alpha * y * errors) / Z# 构建最终强学习器
def predict(X):scores = np.sum([alpha * model.predict(X) for alpha, model in zip(alphas, models)], axis=0)return np.sign(scores)

结语

Adaboost算法以其独特的方式展示了如何通过集成弱学习器来构建出强大且鲁棒的预测模型。它不仅在理论上优雅,在实践中也极其有效,成为机器学习领域的一个基石。随着技术的发展,Adaboost及其变体在复杂数据集上的应用持续扩展,持续推动着人工智能的进步。理解并掌握Adaboost的工作机制,对于每一位致力于机器学习研究和应用的开发者来说,都是不可或缺的。

End

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/336607.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++ vector 模拟实现

vector的底层也是一个动态数组,他与 string 的区别就是,string 是专门用来存储字符类数据的,为了兼容C语言,使用C语言的接口,在string的动态数组内都会都开一块空间用来存 \0 ,而vector则不会。 首先我们要…

【Linux】TCP协议【上】{协议段属性:源端口号/目的端口号/序号/确认序号/窗口大小/紧急指针/标记位}

文章目录 1.引入2.协议段格式4位首部长度16位窗口大小32位序号思考三个问题【demo】标记位URG: 紧急指针是否有效提升某报文被处理优先级【0表示不设置1表示设置】ACK: 确认号是否有效PSH: 提示接收端应用程序立刻从TCP缓冲区把数据读走RST: 对方要求重新建立连接; 我们把携带R…

《QT实用小工具·六十八》基于QMenu开发的炫酷菜单栏

1、概述 源码放在文章末尾 该项目基于QMenu实现了炫酷的菜单栏效果,包含了如下功能: 1、实现了类似word菜单栏的效果,可以在菜单栏中横向添加不同的菜单 2、鼠标点击菜单可以展开菜单栏,再次点击菜单可以收起菜单栏 3、鼠标点击笑…

C++ wasm 使用教程

环境搭建 git clone https://github.com/emscripten-core/emsdk.gitgit pull./emsdk install latest./emsdk activate latestsource ./emsdk_env.sh./emcc -v && ./emcc c11__Thread_local.c -s WASM_WORKERS --threadprofiler --memoryprofiler -v -o test.html &…

鸿蒙OS开发:【一次开发,多端部署】(分栏控件)

一多分栏控件 介绍 本示例分别展示了多场景下,一多分栏控件的响应式变化效果。 本示例分别用到了[SideBarContainer]组件与[Navigation]组件,对应使用场景如下: ABC:即SideBarContainer组件组合Navigation组件AC:S…

AI企业需要“联盟营销”?一文带你探索AI企业营销新玩法!

为什么联盟营销对AI业务有较大优势 联盟营销在电商领域、saas领域与其他产品领域同样有效。在AI业务中,它有效的原因与其他领域大不相同。 高好奇心和试用率 AI领域是创新的热点。它吸引了一群渴望探索和尝试每一项新技术的人群。这种蓬勃的好奇心为聪明的AI企业提…

Linux 编译器gcc/g++使用

gcc/g同理 编译器运行过程 1. 预处理(进行宏替换) gcc -E a.c -o a.i 预处理后还是c语言 -E 只激活预处理,这个不生成文件,你需要把它重定向到一个输出文件里面 告诉gcc,从现在开始进行程序的翻译,将预处理工作做完停下 2. 编译&#x…

【因果推断python】2_因果关系初步2

目录 偏差 关键思想 偏差 偏差是使关联不同于因果关系的原因。幸运的是,我们的直觉很容易理解。让我们在课堂示例中回顾一下我们的平板电脑。当面对声称为孩子提供平板电脑的学校会获得更高考试成绩的说法时,我们可以反驳说,即使没有平板电…

新疆 | 金石商砼效率革命背后的逻辑

走进标杆企业,感受名企力量,探寻学习优秀企业领先之道。 本期要跟砼行们推介的标杆企业是新疆砼行业的龙头企业:新疆兵团建工金石商品混凝土有限责任公司(以下简称:新疆金石)。 从年产80万方到120万方&am…

Go 和 Delphi 定义可变参数函数的对比

使用可变参数函数具有灵活性、重用性、简化调用等优点,各个语言有各自定义可变参数函数的方法,也有通用的处理方法,比如使用数组、定义参数结构体、使用泛型等。 这里总结记录一下 go、delphi 的常用的定义可变参数函数的方式! 一…

数据挖掘与机器学习——回归分析

目录 回归分析定义: 案例: 线性回归 预备知识: 定义: 一元线性回归: 如何找出最佳的一元线性回归模型: 案例: python实现: 多元线性回归 案例: 线性回归的优缺点…

基于xilinx FPGA的 FFT IP使用例程说明文档(可动态配置FFT点数,可计算信号频率与幅度)

目录 1 概述2 IP examples功能3 IP 使用例程3.1 IP设置3.2 fft_demo端口3.3 例程框图3.4 仿真结果3.5 仿真验证得出的结论4 注意事项5例程位置 1 概述 本文用于讲解xilinx IP 的FFT ip examples的功能说明,方便使用者快速上手。 参考文档:《PG109》 2 …

如何配置才能连接远程服务器上的 redis server ?

文章目录 Intro修改点 Intro 以阿里云服为例。 首先,我在我买的阿里云服务器中以下载源码、手动编译的方式安装了 redis-server,操作流程见:Ubuntu redis 下载解压配置使用及密码管理 && 包管理工具联网安装。 接着,我…

Atlas 血缘分析-hive/spark

Apache Atlas部署安装 这里需要注意,需要从官网下载Atlas的源码,不要从git上分支去checkout,因为从分支checkout出来的代码,无法正常运行,这里小编使用针对Atlas-2.3.0源码进行编译. mvn clean -DskipTests package …

2024 京麟ctf -MazeCodeV1

文章目录 检查代码思路一个字节的指令注意附上S1uM4i佬们的exp https://www.ctfiot.com/184181.html 检查 代码 __int64 __fastcall check_solve(char *a1) {__int64 result; // rax__int64 v2; // rax__int64 index_step; // rax__int64 v4; // rax__int64 v5; // rax__int64…

MySQL索引与事务

1. 索引 (1)概念 索引是一种特殊的文件,包含着对数据表里所有记录的引用指针。可以对表中的一列或多列创建索引, 并指定索引的类型,各类索引有各自的数据结构实现。 (2)利弊 利: 数…

基于51单片机的温湿度控制系统

一.硬件方案 本设计采用51单片机每2秒钟从DHT11温湿度传感器中读入温度和湿度,在液晶屏上即时显示。液晶屏上同时显示温湿度上限值,该上限值保存外外部EEPROM存储器中,掉电不失,并且可以通过四只按键上调或下调。当温度或湿度值超…

车机壁纸生成解决方案,定制化服务,满足个性化需求

在数字化与智能化浪潮的推动下,汽车内部设计已不再仅仅满足于基本功能的需求,更追求为用户带来前所未有的视觉享受与沉浸式体验。美摄科技,凭借其在图像生成与处理领域的深厚积累,推出了一款创新的车机壁纸生成解决方案&#xff0…

LORA微调,让大模型更平易近人

技术背景 最近和大模型一起爆火的,还有大模型的微调方法。 这类方法只用很少的数据,就能让大模型在原本表现没那么好的下游任务中“脱颖而出”,成为这个任务的专家。 而其中最火的大模型微调方法,又要属LoRA。 增加数据量和模…

VMware ESXi 7.0 U3q 发布 - 领先的裸机 Hypervisor

VMware ESXi 7.0 U3q 发布 - 领先的裸机 Hypervisor VMware ESXi 7.0 Update 3 Standard & All Custom Image for ESXi 7.0U3 Install CD 请访问原文链接:https://sysin.org/blog/vmware-esxi-7-u3/,查看最新版。原创作品,转载请保留出…