【机器学习300问】106、Inception网络结构如何设计的?这么设计的目的是什么?

        谷歌的Inception网络,也被称为GoogLeNet,是Google在2014年推出的一种深度卷积神经网络(CNN)模型,在这之前的AlexNet、VGG等结构都是通过增大网络的深度(层数)来获得更好的训练效果,但层数的增加会带来很多负作用,比如overfit、梯度消失、梯度爆炸等。Inception网络的核心组成部分是所谓的"Inception模块",这是对传统卷积神经网络架构的创新。

一、Inception模块

(1)Inception模块 

        Inception模块的基本设计理念是通过在一个层内并行地使用不同大小的卷积核(例如1x1, 3x3, 5x5)以及最大池化操作,能够在不显著增加计算负担的前提下,捕获图像的不同尺度特征。具体来说,模块包含以下几个部分:

Inception模块示意图

按照上图中Inception模块中的几个部分,一个个介绍一下他们的作用:

  • 1x1卷积层:Inception模块中的1x1卷积层不仅用于减少计算量,还能够有效控制网络中的参数数量。通过降低特征图的深度(通道数),它减轻了网络的复杂性,从而减少了梯度在深层网络中传播时可能遇到的路径数量,防止梯度爆炸和梯度消失。
  • 3x3和5x5卷积层:Inception模块通过并行使用不同大小的卷积核和池化操作,能够在不同的尺度上提取特征,这增加了网络的多样性,减少了单一路径上的依赖,从而间接帮助梯度更好地传播。但5x5卷积因其较大的感受野而计算成本较高,因此较少使用。
  • 最大池化层:增加模型对不同尺度信息的鲁棒性。
  • 拼接输出:会在深度维度上被拼接(Filter concatenation),形成一个具有丰富特征表示的输出。

(2)Inception网络架构

         通常Inception网络是从几个传统的卷积层开始,用于初步特征提取。然后网络主体由多个Inception模块堆叠而成,每个模块根据需要可能包含不同数量的卷积层和不同配置的Inception结构。在最后的几个模块之后,会使用全局平均池化层来替代全连接层,这一步骤可以显著减少参数数量,同时保持模型的判别能力。之后,通常会接一个或几个全连接层用于最终的分类任务。

GoogLeNet整体架构

        Inception网络经历了多次迭代,从Inception V1到V4,以及Xception等变种。这些后续版本在基础Inception模块上进行了优化,例如引入了批量归一化、因子分解卷积、残差连接等技术,以进一步提高模型的效率和准确性,同时继续解决梯度消失和过拟合等问题。

二、Inception网络结构的优点

        Inception网络无需人为干预以确定使用哪个过滤器或是否进行池化操作,这些参数均由网络内部机制自主决定。你可以给网络添加这些参数的所有可能值,并通过连接这些输出,让网络在训练过程中自我学习,以优化其参数配置,并确定最佳的过滤器组合。

(1)多尺度并行处理

        Inception模块通过并行使用不同大小的卷积核和池化操作,自动地在不同尺度上捕捉特征,这在一定程度上模拟了“自主决定”各种滤波器尺寸的效果,无需人工精确选择单一最优尺寸。这种设计减少了对人工特征工程的依赖,提高了模型的泛化能力。

(2)高效利用计算资源

        通过使用1x1卷积核进行降维,以及分解大尺寸卷积(如用两个3x3卷积代替一个5x5卷积),Inception网络在保持强大表达能力的同时,有效控制了模型的复杂度和计算成本,这是其一大优势。这里用一个例子来说明一下:

① 不包含1x1卷积模块的情况

参数量:

        对于一个5x5卷积层,如果输入通道数为256,输出通道数为64,则参数量为卷积核的尺寸乘以输入通道数再乘以输出通道数,即5\times 5\times 256\times 256

连接数:

        每个神经元的连接数包括所有输入通道上的权重加上一个偏置项。对于5x5卷积核,每个输出通道有 5\times 5\times 256+1 个连接。总连接数为每个输出通道的连接数乘以输出通道数再乘以输出特征图的尺寸,即(5\times 5\times 256\times 256)\times 64 \times n^2

② 包含1x1卷积模块的情况

        在Inception结构中,通常会在5x5卷积之前使用1x1卷积来进行降维,假设1x1卷积的输出通道数为32,这样可以减少后续5x5卷积的计算负担。

参数量:

  • 1x1卷积参数量:1 \times 1 \times 256 \times 32
  • 5x5卷积参数量:在经过1x1卷积降维后,输入通道变为32,所以参数量为5 \times 5 \times 32 \times 64

连接数:

  • 1x1卷积的每个输出通道有1 \times 1 \times 256 + 1个连接,总共(1 \times 1 \times 256 + 1) \times 32 \times n^2个连接。
  • 5x5卷积的每个输出通道有5 \times 5 \times 32 + 1个连接,总共有(5 \times 5 \times 32 + 1) \times 64 \times n^2个连接。
  • 总连接数为两部分之和

③ 计算结果

  • 不包含1x1卷积模块时,对于输出特征图尺寸为 7×7 的情况,连接数为约 20,073,536
  • 包含1x1卷积模块时,同样的输出尺寸下,连接数减少到约 2,914,912
  • 不包含1x1卷积模块的情况下参数量为 409,600
  • 包含1x1卷积模块的情况下参数量为 59,392

        计算证实包含1x1卷积模块的结构显著减少了模型的参数量和连接数,从而降低了计算复杂度,提高了训练效率,同时保持了模型的表达能力。

(3)集成多种特征

        Inception模块的结构允许网络整合不同类型的特征信息(局部的、全局的、不同尺度的),这种集成方式有利于学习更丰富的图像表示,提高分类或检测的准确性。

(4)灵活可拓展

        Inception网络的模块化设计便于调整和扩展,研究人员可以根据特定任务的需求,通过增加或修改Inception模块来优化模型结构,这赋予了模型极高的灵活性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/337705.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue3简单快速实现主题切换功能

⛰️个人主页: 蒾酒 🔥系列专栏:《vue3实战》 目录 内容概要 实现步骤 1.定义不同主题的css样式变量 2.入口main.ts中引入这个样式文件 3.主题样式css变量引用 4.设置默认主题样式 5.实现点击按钮主题切换 总结 最近发现了一个巨牛的人工智…

JS-Lodash工具库

文档:Lodash Documentation orderBy函数:根据条件进行排序 注:第一个是要排序的数组,第二个是根据什么字段进行排序,第三个是排序的方式(desc倒序) 安装方式:Lodash npm i lodash…

python判断文件是否存在

import os test_path "/Users/yxk/Desktop/test/GrayScale.tif" if(os.path.exists(test_path)):print(文件存在!!!!) else:print("文件不存在!!!!")结果如下 …

ABAP 借助公司封装的钉钉URL,封装的RFC给钉钉发送消息

FUNCTION ZRFC_BC_SMSSEND_DINGTALK. *"---------------------------------------------------------------------- *"*"本地接口: *" IMPORTING *" VALUE(DESTUSRID) TYPE CHAR255 *" VALUE(CONTENT) TYPE CHAR255 *&quo…

Linux 的权限

目录 Linux 的用户 root 用户 和 普通用户 如何新建普通用户? 如何切换用户? 一开始是以 root 用户登录: 一开始以普通用户登录: 如何删除用户? Linux文件权限 什么是读权限( r )&#…

自然语言处理学习路线

学习目标 NLP 系统知识(从入门到入土) 学习内容 NLP的基本流程:(待更)文本预处理(标点符号处理、繁体转简体、分词Tokenizer):(待更)词袋模型(TF…

校园志愿者|基于SprinBoot+vue的校园志愿者管理系统(源码+数据库+文档)

校园志愿者管理系统 目录 基于SprinBootvue的校园志愿者管理系统 一、前言 二、系统设计 三、系统功能设计 1 系统功能模块 2管理员功能 3志愿者功能 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取: 博主介绍&a…

关于FPGA 使用SPI FLASH固化时如何配置固化参数

关于FPGA 使用SPI FLASH固化时如何配置固化参数 EDA工具:Vivado 关于FPGA 使用SPI FLASH固化时如何配置固化参数一、引言二、如何设置固化参数:使用50M的速度 ,SPI为X4 ,以及bit压缩第一:点open implenment design第二…

万字长文,小白新手怎么开始做YOLO实验,从零开始教!整体思路在这里,科研指南针!

最近专栏来了很多的新手小白,对科研实验的过程感到困惑和无从下手,这篇文章就来讲解一下整体的科研流程,从选择数据集到发表论文的各个步骤,并针对大家在实验中常犯的错误进行解答。并且为大家提供通向我其他相关博客的指引&#…

14.微信小程序之地理定位功能

目录 1.地理定位介绍 1.1 申请开通 1.2 使用方法 2.拒绝授权后的解决方案 3.开通腾讯位置服务 4.LBS 逆地址解析 1.地理定位介绍 小程序地理定位是指通过小程序开发平台提供的 API,来获取用户的地理位置信息。用户在使用小程序时,可以授权小程序获…

【儿童节特辑】用AI创造音乐,变身小小音乐家!

在儿童节这个充满欢笑的日子里,让我们一起探索如何用AI技术为孩子们准备一份特别的礼物——一张由AI生成的音乐专辑。🎵✨ 🎼 文字变旋律:开启音乐创作之旅 想象一下,只需一段文字,就能编织出一曲悠扬悦耳…

年中汇报季?——一文教会你如何进行数据分析

一、常见的数据分析报告类型 数据分析报告通常可以分为三类:日常分析报告、专题型分析报告和综合性分析报告。前两者是以数据结论建议的格式去撰写,综合性分析报告则是:行业环境调研(竞品类产品数据分析)自身产品数据…

【计算机软考_初级篇】每日十题2

各位老师大家好,软考对于日常的知识储备和企业中的考试,或者说在校大学生来说,那用处是非常大的!!那么下面我们进入正题,软考呢是分两种语言,java和C,对于其他语言目前还没&#xff…

轻松记录收支明细,智能筛选并统计买菜历史记录:一键掌握家庭财务

在繁忙的生活中,你是否曾为家庭财务的琐碎而烦恼?买菜、购物、日常开销……每一笔支出都似乎难以捉摸,让你在月底对账时头疼不已。现在,我们为你带来了一款全新的财务记录工具,让你轻松记录收支明细,智能筛…

【验证码识别】Yolov8入门到实战点选验证码数据集分类训练,孪生训练,导出onnx,搭建部署接口

【验证码识别】Yolov8入门到实战点选验证码数据集分类训练,孪生训练,导出onnx,搭建部署接口 文章目录 【验证码识别】Yolov8入门到实战点选验证码数据集分类训练,孪生训练,导出onnx,搭建部署接口声明一、标…

Python使用动态代理的多元应用

Python作为一种功能强大且易于学习的编程语言,在网络编程领域具有广泛的应用。当Python与动态代理技术结合时,便开启了一扇通往更多可能性的大门。以下将深入探讨Python使用动态代理可以实现的多种应用。 首先,Python结合动态代理在网络爬虫…

【活动】GPT-4O:AI语言生成技术的新里程碑

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 GPT-4O:AI语言生成技术的新里程碑引言GPT系列简史回顾GPT-1: 初露锋…

创刊即王炸?首个IF近7分,稳坐中科院1区!同领域全球第一!

【欧亚科睿学术】 01 期刊基本概况 【期刊类型】经济类SSCI 【出版社】SPRINGER出版社 【期刊概况】IF:8.0-9.0,JCR1区,中科院1区 【版面类型】正刊,仅少量版面 【预警情况】2020-2024年无预警记录 【收录年份】2016年被WO…

I.MX6ULL主频和时钟配置实验

系列文章目录 I.MX6ULL主频和时钟配置实验 I.MX6ULL主频和时钟配置实验 系列文章目录一、前言二、I.MX6U 时钟系统详解三、硬件原理四、 7 路 PLL 时钟源五、时钟树简介六、内核时钟设置七、PFD 时钟设置八、AHB、IPG 和 PERCLK 根时钟设置九、实验程序编写十、编译下载10.1编写…

华为telnet的两种认证方式

华为telnet的两种认证方式 实验拓扑: 实验要求: 1.采用普通密码认证实现telnet 远程登录机房设备R3 2.采用AAA认证服务方式实现telnet 远程登录机房设备R3 实验步骤: 1.完成基本配置(设备接口配置IP,此步骤略过&#…