python zip()函数(将多个可迭代对象的元素配对,创建一个元组的迭代器)zip_longest()

文章目录

  • Python `zip()` 函数深入解析
    • 基本用法
      • 函数原型
      • 基础示例
    • 处理不同长度的迭代器
    • 高级用法
      • 多个迭代器
      • 使用 `zip()` 与 `dict()`
      • 解压序列
    • 注意事项
      • 内存效率:`zip()` 返回的是一个迭代器,这意味着直到迭代发生前,元素不会被消耗。这使得 `zip()` 特别内存效率。
        • 迭代器和内存效率
        • `zip()` 函数的工作原理
          • 延迟计算:`zip()` 并不会预先计算出所有的元组。它仅在迭代到某个位置时,才会生成那个位置的元组。这就是所谓的“惰性计算”(lazy evaluation)。
          • 内存使用:因为数据是按需生成的,`zip()` 在任何给定时间点不需要将所有组合的元组存储在内存中。这样可以避免在处理大量数据时占用大量内存。
        • 实际例子
      • 一次性使用:由于 `zip()` 返回的是一个迭代器,所以迭代过后,它将无法再次使用。
    • 使用技巧
      • 与 `enumerate` 结合使用
      • 处理不等长序列的替代方法(需要处理不等长的序列而又不想在最短序列结束时停止,可以使用 `itertools.zip_longest` 方法)
      • 与列表推导式结合
    • 应用场景
      • 数据科学中的应用
      • 多语言数据处理
    • 结论

Python zip() 函数深入解析

Python 的 zip() 函数是一个内置函数,用于将多个可迭代对象的元素配对,创建一个元组的迭代器。这个功能在处理并行数据时非常有用。本文将深入探讨 zip() 函数的使用方法、高级应用场景以及一些注意事项。

基本用法

函数原型

zip() 函数的基本语法如下:

zip(*iterables)
  • *iterables:一个或多个可迭代对象,如列表、元组或字典。

基础示例

开始之前,先看一个简单的例子,演示如何使用 zip() 将两个列表中的相对应元素组合在一起:

list1 = [1, 2, 3]
list2 = ['a', 'b', 'c']
zipped = zip(list1, list2)
print(list(zipped))

输出:

[(1, 'a'), (2, 'b'), (3, 'c')]

在这里插入图片描述

这里,zip() 函数接受两个列表作为输入,并返回一个迭代器。迭代器中的每个元素都是一个元组,包含来自所有输入可迭代对象的对应元素。

处理不同长度的迭代器

当输入的可迭代对象长度不一致时,zip() 会根据最短的对象结束。看下面的例子:

numbers = [1, 2, 3, 4]
letters = ['a', 'b', 'c']
zipped = zip(numbers, letters)
print(list(zipped))

输出:

[(1, 'a'), (2, 'b'), (3, 'c')]

在这里插入图片描述

可以看到,虽然 numbers 列表有四个元素,但输出只包含三个元组,因为 letters 只有三个元素。

高级用法

多个迭代器

zip() 可以同时处理多于两个的迭代器。例如,将三个列表组合在一起:

list1 = [1, 2, 3]
list2 = ['a', 'b', 'c']
list3 = [0.1, 0.2, 0.3]
zipped = zip(list1, list2, list3)
print(list(zipped))

输出:

[(1, 'a', 0.1), (2, 'b', 0.2), (3, 'c', 0.3)]

在这里插入图片描述

使用 zip()dict()

zip()dict()结合使用,常用于将两个列表转换成字典,其中一个列表包含键,另一个列表包含值:

keys = ['name', 'age', 'gender']
values = ['Alice', 25, 'Female']
dictionary = dict(zip(keys, values))
print(dictionary)

输出:

{'name': 'Alice', 'age': 25, 'gender': 'Female'}

在这里插入图片描述

解压序列

使用 zip(*iterable) 可以实现解压,即反向操作,将配对的数据序列解开成多个独立的序列:

pairs = [(1, 'a'), (2, 'b'), (3, 'c')]
numbers, letters = zip(*pairs)
print(list(numbers))
print(list(letters))

输出:

[1, 2, 3]
['a', 'b', 'c']

在这里插入图片描述

这里,*pairs 将列表中的每个元组解包,然后 zip() 将所有第一项组合成一个元组,所有第二项组合成另一个元组。

注意事项

内存效率:zip() 返回的是一个迭代器,这意味着直到迭代发生前,元素不会被消耗。这使得 zip() 特别内存效率。

当谈到 zip() 函数的内存效率时,关键在于它返回的是一个迭代器(iterator),而不是直接返回整个数据集合。这一点非常重要,因为它涉及到如何在内存中处理和存储数据。

迭代器和内存效率

迭代器是一种访问集合元素的方式,但它不会在内存中同时存储所有元素。相反,迭代器会一个接一个地生成元素,仅在迭代过程中才处理每个元素。这意味着,与直接生成并存储整个数据列表相比,使用迭代器可以显著减少内存的使用。

zip() 函数的工作原理

当使用 zip() 函数时,如果传入多个可迭代对象,zip() 会创建一个迭代器,这个迭代器会组合这些对象中相对应的元素形成一个个元组。关键点在于:

延迟计算:zip() 并不会预先计算出所有的元组。它仅在迭代到某个位置时,才会生成那个位置的元组。这就是所谓的“惰性计算”(lazy evaluation)。
内存使用:因为数据是按需生成的,zip() 在任何给定时间点不需要将所有组合的元组存储在内存中。这样可以避免在处理大量数据时占用大量内存。
实际例子

假设有两个非常大的列表,如果使用传统的方法(如列表推导或循环)来组合这些列表,将会创建一个包含所有组合的新列表,这需要足够的内存来一次性存储所有的元组。

list1 = range(1000000)  # 大列表1
list2 = range(1000000, 2000000)  # 大列表2# 传统方法,占用大量内存
combined_list = [(x, y) for x, y in zip(list1, list2)]

相比之下,使用 zip()

# 使用 zip() 创建迭代器
zipped = zip(list1, list2)# 可以逐个处理元组,不必存储整个组合列表
for item in zipped:process(item)  # 处理每个元组

在第二种方法中,zipped 迭代器会一个接一个地生成每个元组,只有当前的元组会占用内存。这对于内存管理来说是非常有效的,特别是在处理大数据集时。

总之,zip() 通过生成迭代器来实现内存效率,使得即使是处理大规模数据集,也不会导致大量的内存消耗,这对于资源有限的环境非常关键。这种按需访问数据的方式也帮助程序员写出更加高效和可扩展的程序。

一次性使用:由于 zip() 返回的是一个迭代器,所以迭代过后,它将无法再次使用。

使用技巧

enumerate 结合使用

在处理数据时,往往不仅需要元素值,还需要元素的索引。结合使用 enumeratezip 可以同时获得索引和来自多个序列的元素。下面是一个示例,展示如何在循环中同时获取索引和来自两个列表的元素:

names = ['Alice', 'Bob', 'Charlie']
ages = [25, 30, 35]
for index, (name, age) in enumerate(zip(names, ages)):print(f"Index {index}: {name} is {age} years old.")

输出:

Index 0: Alice is 25 years old.
Index 1: Bob is 30 years old.
Index 2: Charlie is 35 years old.

在这里插入图片描述

处理不等长序列的替代方法(需要处理不等长的序列而又不想在最短序列结束时停止,可以使用 itertools.zip_longest 方法)

如果需要处理不等长的序列而又不想在最短序列结束时停止,可以使用 itertools.zip_longest 方法。这个方法在 itertools 模块中,它允许用一个填充值填充短序列的缺失部分。例如:

from itertools import zip_longestnumbers = [1, 2, 3, 4, 5]
letters = ['a', 'b', 'c']
zipped_longest = zip_longest(numbers, letters, fillvalue='?')
print(list(zipped_longest))

输出:

[(1, 'a'), (2, 'b'), (3, 'c'), (4, '?'), (5, '?')]

在这里插入图片描述

与列表推导式结合

zip() 函数与列表推导式结合使用可以更加便捷地创建列表。这在数据处理和数据转换中尤为有用。例如,可以快速创建一个元组列表,每个元组包含不同列表中相应位置的元素:

numbers = [1, 2, 3, 4]
squares = [x**2 for x in numbers]
cubes = [x**3 for x in numbers]
combined = [(n, s, c) for n, s, c in zip(numbers, squares, cubes)]
print(combined)

输出:

[(1, 1, 1), (2, 4, 8), (3, 9, 27), (4, 16, 64)]

在这里插入图片描述

应用场景

数据科学中的应用

在数据科学和机器学习中,经常需要将多个数据集(通常是特征列表)组合起来进行进一步处理。zip() 函数在这种情况下非常有用,因为它可以轻松地将多个数据列表合并为一个列表,每个列表元素都是一个包含所有对应特征的元组。

多语言数据处理

在处理多语言文本数据时,zip() 同样非常有用。比如在翻译系统中,原始文本和翻译文本可能存储在两个列表中,使用 zip() 可以方便地将它们对齐,进而处理对应的文本对。

结论

zip() 是 Python 中一个强大而灵活的内置函数,适用于多种数据处理场景。它不仅能够简化代码,还能提高代码效率。在日常编程或数据处理工作中合理利用 zip() 可以大大提高开发效率和数据处理能力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/337862.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mysql | select语句导入csv后再导入excel表格

需求 从mysql数据库中导出数据到excel 解决方案 sql导出csv文件 sql SELECT col1,col2 FROM tab_01 WHERE col3 xxx INTO OUTFILE /tmp/result.csv FIELDS TERMINATED BY , ENCLOSED BY " LINES TERMINATED BY \n;csv文件导出excel文件 1、【数据】-【导入数据】 …

【redis】宝塔,线上环境报Redis error: ERR unknown command del 错误

两种方式: 1.打开宝塔上的redis,通过配置文件修改权限,注释:#rename-command DEL “” 2.打开服务器,宝塔中默认redis安装位置是:cd /www/server/redis 找到redis.conf,拉到最后,注释#rename-co…

『 Linux 』文件系统

文章目录 磁盘构造磁盘抽象化 磁盘的寻址方式磁盘控制器磁盘数据传输文件系统Inode数据块(Data Blocks)超级块(SuperBlock)块组描述符(Group Descriptor) 磁盘构造 磁盘内部构造由磁头臂,磁头,主轴,盘片,盘面,磁道,柱面,扇区构成; 磁头臂:控制磁头的移动,可以精确地…

测试工具fio

一、安装部署 fio是一款优秀的磁盘IO测试工具,在Linux中比较常用于测试磁盘IO 其下载地址:https://brick.kernel.dk/snaps/fio-2.1.10.tar.gz 或者登录其官网:http://freshmeat.sourceforge.net/projects/fio/ 进行下载。 tar -zxvf fio-…

PCL 二维凸包切片法计算树冠体积

目录 一、算法原理1、原理概述2、参考文献二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法原理 1、原理概述 二维凸包法是先将树冠等间隔分层切片,如图(e)采用二维凸包算法对每层…

ABP框架+Mysql(二)

展示页面--图书列表页面 本地化 开始的UI开发之前,我们首先要准备本地化的文本(这是你通常在开发应用程序时需要做的).本地化文本在前端页面会常用。 本地化文本位于 Acme.BookStore.Domain.Shared 项目的 Localization/BookStore 文件夹下: 打开 en.json (英文翻译)文件并更…

Superset二次开发之Github项目推送到GitLab仓库

以下是从GitHub克隆Superset项目并将其推送到GitLab的详细操作步骤 lab 地址: xxx lab 配置: 生成SSH密钥 ssh-keygen -t rsa -b 4096 -C "邮箱地址" 默认情况下密钥会生成在~/.ssh (/c/Users/Administrator/.ssh/id_rsa)目录下。 公钥添加到GitLab: 打开公钥文件…

音视频开发—FFmpeg打开麦克风,采集音频数据

文章目录 1.使用命令行实现采集PCM数据2.使用代码实现3.播放PCM4.PCM转换为WAV 1.使用命令行实现采集PCM数据 确保你的系统有FFmpeg安装。你可以通过在终端运行ffmpeg -version来检查是否已安装。 找出你的麦克风设备名。在Linux中,你可以使用arecord -l命令列出所…

Java实战:从文件读出学生列表

本实战项目的目标是从文本文件中读取学生列表,并验证读取过程的正确性通过单元测试。 创建静态方法 实现一个名为readStudentsFromFile的静态方法,该方法接收一个文件路径作为参数。创建一个Student对象的列表,用于存储从文件中读取的学生信息…

使用PyCharm 开发工具创建工程

一. 简介 前面学习了 安装 python解释器。如何安装python的一种开发工具 PyCharm。 本文来简单学习一下,如何使用 PyCharm 开发工具创建一个简单的 python工程。 二. PyCharm 开发工具创建一个工程 1. 首先,首先打开PyCharm 开发工具。选择 创建一…

2024-6-1 石群电路-20

2024-6-1,星期六,18:24,天气:晴,心情:晴。已经到学校啦,本来打算今天休息一天不更了,但是觉得可以更新完再休息,没有这么累,哈哈哈哈,这就不得不说…

长安链使用Golang编写智能合约教程(二)

长安链2.3.0的go合约虚拟机和2.3.0以下的不兼容,编译的方式也有差异,所以在ide上做了区分。 教程三会写一些,其他比较常用SDK方法的解释和使用方法 教程一:(长安链2.1.的版本的智能合约) 教程三&#xff…

排序方法——堆排序

文章目录 一、堆的概念二、向下调整法三、堆排序建堆排序 四、 完整代码 一、堆的概念 堆的概念:一个按照完全二叉树的储存方式存储的一维数组我们称之为堆。   堆可以分为大堆和小堆:   大堆:二叉树中父亲节点的值都比自己的孩子节点的…

阿里云部署nodejs

目录 1、安装node.js 1-1 进入opt/software 1-2 下载node.js安装包 1-3 解压 2 配置环境变量 2-1 vim中配置环境变量 2-2 命令行中保存环境变量 2-3 检查安装版本 2-3 更换镜像 3、上传node.js项目 1-1 启动项目 1-2 配置对应的安全组 ​编辑 4、pm2启动多个node项…

运维开发.Kubernetes探针与应用

运维系列 Kubernetes探针与应用 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.csdn.net/qq_28550263…

SQL—DQL(数据查询语言)之小结

一、引言 在前面我们已经学习完了所有的关于DQL(数据查询语言)的基础语法块部分,现在对DQL语句所涉及的语法,以及需要注意的事项做一个简单的总结。 二、DQL语句 1、基础查询 注意: 基础查询的语法是:SELE…

移动端性能测试(android/ios)

solox官网 https://github.com/smart-test-ti/SoloX solox简介 实时收集android/ios性能的工具,Android设备无需Root,iOS设备无需越狱。有效解决Android和iOS性能的测试和分析挑战。 solox安装 环境准备 python安装3.10以上的 python官网下载地址…

cocos creator 3.x实现手机虚拟操作杆

简介 在许多移动游戏中,虚拟操纵杆是一个重要的用户界面元素,用于控制角色或物体的移动。本文将介绍如何在Unity中实现虚拟操纵杆,提供了一段用于移动控制的代码。我们将讨论不同类型的虚拟操纵杆,如固定和跟随,以及如…

[AI OpenAI] 推出ChatGPT Edu

一种负担得起的解决方案,帮助大学将AI负责任地引入校园。 我们宣布推出ChatGPT Edu,这是一个专为大学设计的ChatGPT版本,旨在负责任地向学生、教职员工、研究人员和校园运营部署AI。ChatGPT Edu由GPT-4o提供支持,能够跨文本和视觉…

iPad里的图片如何导出 iPad的照片如何管理

我们的设备中充满了各种重要的照片和视频,特别是iPad,作为苹果公司的一款强大的平板电脑,它不仅能够捕捉生活中的精彩瞬间,还可以存储和展示我们珍贵的回忆。然而,随着照片数量的不断增加,有效地管理和导出…