JCR一区级 | Matlab实现TCN-BiGRU-MATT时间卷积双向门控循环单元多特征分类预测

JCR一区级 | Matlab实现TCN-BiGRU-MATT时间卷积双向门控循环单元多特征分类预测

目录

    • JCR一区级 | Matlab实现TCN-BiGRU-MATT时间卷积双向门控循环单元多特征分类预测
      • 分类效果
      • 基本介绍
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现TCN-BiGRU-MATT时间卷积双向门控循环单元多特征分类预测,TCN-BiGRU-Multihead-Attention;
多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。
2.数据输入12个特征,输出4个类别,main.m是主程序,其余为函数文件,无需运行;
3.可视化展示分类准确率;
4.运行环境matlab2023b及以上。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现TCN-BiGRU-MATT时间卷积双向门控循环单元多特征分类预测。
%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  读取数据
res = xlsread('data.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1;               % 特征维度
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本mid_size = size(mid_res, 1);                    % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);t_train =  categorical(T_train);
t_test  =  categorical(T_test );T_sim1 = T_sim1(index_1);
T_sim2 = T_sim2(index_2);
%% 性能评价
error1 = sum((T_sim1' == T_train))/M * 100 ;
error2 = sum((T_sim2' == T_test))/N * 100 ;%%  混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/338135.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【设计模式深度剖析】【7】【结构型】【享元模式】| 以高脚杯重复使用、GUI中的按钮为例说明,并对比Java类库设计加深理解

👈️上一篇:外观模式 | 下一篇:结构型设计模式对比👉️ 设计模式-专栏👈️ 目录 享元模式定义英文原话直译如何理解?字面理解例子:高脚杯的重复使用例子:GUI中的按钮传统方式使用享元模式 4个角色1. …

【TB作品】MSP430G2553单片机,智能储物柜

智能储物柜将实现的功能: 1在超市或者机场场景下,用户需要进行物品暂存时。按下储物柜键盘的需求按键,智能储物柜将会随机为用户分配一个还没使用的柜子,屏幕提示用户选择密码存储方式或者身份证存储方式; 2 用户选择密…

教你搞一个比较简单的计时和进度条装饰器

教你搞一个比较简单的计时和进度条装饰器 什么是装饰器为啥要用装饰器呢?上代码!如何使用装饰器效果 什么是装饰器 装饰器的英文是:Decorator。装修的英文是:Decoration。顾名思义就是我们要用装饰器在函数func()上搞点儿事儿&am…

纯Java实现Google地图的KMZ和KML文件的解析

目录 前言 一、关于KMZ和KML 1、KMZ是什么 2、KML是什么 二、Java解析实例 1、POM.xml引用 2、KML 基类定义 3、空间对象的定义 4、Kml解析工具类 三、KML文件的解析 1、KML解析测试 2、KMZ解析测试 四、总结 前言 今天是六.一儿童节,在这里祝各位大朋友…

oracle mysql索引区别

文章目录 1.引言1.1 索引的基本概念1.2 Oracle和MySQL的简介 2.Oracle索引2.1 Oracle索引的类型**B-Tree索引****Bitmap索引****Function-Based索引****Partitioned索引****Text索引** 2.2 Oracle索引的工作原理2.3 Oracle索引的实例代码 3.MySQL索引3.1 MySQL索引的类型**B-Tr…

synchronized 锁的到底是什么?

通过8种情况演示锁运行案例,看看我们到底锁的是什么 1锁相关的8种案例演示code package com.bilibili.juc.lock;import java.util.concurrent.TimeUnit;/*** 题目:谈谈你对多线程锁的理解,8锁案例说明* 口诀:线程 操作 资源类* 8…

CLIP--Learning Transferable Visual Models From Natural Language Supervision

参考:CLIP论文笔记--《Learning Transferable Visual Models From Natural Language Supervision》_visual n-grams模型-CSDN博客 openAI,2021,将图片和文字联系在一起,----->得到一个能非常好表达图片和文字的模型主题&#…

Pandas 使用 concat 数据合并你学会了吗?

1. 使用pd.concat()级联 pandas使用pd.concat函数,与np.concatenate函数类似 # 导包import numpy as npimport pandas as pd​# 为方便讲解,我们首先定义一个生成DataFrame的函数def make_df(indexs,columns): data [[str(j)str(i) for j in colum…

RabbitMQ延时队列

一、RabbitMQ下载并使用插件 1、查看RabbitMQ插件的文件路径 docker inspect rabbitmq 找到Mounts下面Name:rabbitmq_plugin的Source即为插件路径 使用 cd 进入到该目录 2、下载插件 wget https://github.com/rabbitmq/rabbitmq-delayed-message-exchange/releases/download…

C# 使用Aspose生成和修改文档

Aspose库 C#中的Aspose库是一个强大的文件处理库,可以用于各种文件格式的创建、编辑、转换和操作。该库提供了丰富的功能,包括处理文档、电子表格、幻灯片、PDF、图像等多种文件格式,能够轻松实现文件的读取、写入、格式化、样式设置、数据操…

Java Apache Jaccard文本相似度匹配初体验

文章目录 前言一、文本相似度算法的选择二、常见的文本相似度算法介绍三、使用示例1、引入jar包2、方法示例3、Jaccard源码剖析4、Jaccard源码解释 写在最后 前言 产品今天提了个需求,大概是这样的,来,请看大屏幕。。。额。。。搞错了&#…

三丰云评测:免费虚拟主机和免费云服务器体验

今天我来为大家分享一下我的三丰云评测体验。三丰云是一家提供免费虚拟主机和免费云服务器的服务商,为了方便大家了解他们的服务,我特地注册了他们的免费虚拟主机和免费云服务器进行试用。在实际体验中,我发现三丰云的服务表现非常出色。首先…

【产品经理】总篇章

引言: 在最近频繁的产品职位面试中,我深刻体会到了作为产品需要的不仅仅是对市场和技术的敏锐洞察,更多的是在复杂多变的环境中,如何运用沟通、领导力和决策能力来引导产品从概念走向市场。这一系列博客将分享我多年经历和所学到的所以知识&a…

OpenCV学习 基础图像操作(十六):图像距离变换

基础原理 顾名思义,我们可以利用像素之间的距离作为对该像素的一种刻画,并将其运用到相应的计算之中。然而,在一幅图像之中,某种类型的像素并不是唯一的,因此我门常计算的是一类像素到另一类的最小距离,并…

工厂模式详情

一.介绍工厂模式的用途与特点 工厂方法模式是一种创建型设计模式, 其在父类中提供一个创建对象的方法, 允许子类决定实例化对象的类型。定义工厂方法模式(Fatory Method Pattern)是指定义一个创建对象的接口,但让实现这个接口的类来决定实例…

npm install node-sass 安装失败的解决方案:利用国内镜像加速安装

在开发前端项目时,使用Sass作为CSS预处理器是很多开发者的选择。然而,在通过npm安装其Node.js绑定库node-sass时,一些开发者可能会遇到安装失败的问题,尤其是网络原因导致的下载缓慢或中断。本文将指导你如何通过更换为国内镜像源…

如何在测试/线上环境页面访问本地接口?

文章目录 一、前言二、分析三、搭建1、搭建nginx,监听http请求转发2、监听https请求转发 四、总结 一、前言 在工作中,开发完的接口,一般测试的话,基本是使用Postman,如果要到页面测试,就要发版进行测试&a…

《逆水寒》手游周年庆,热度不减反增引发热议

易采游戏网5月31日最新消息:随着数字娱乐时代的飞速发展,手游市场的竞争愈发激烈。在这样的大背景下,《逆水寒》手游以其独特的古风武侠世界和深度的社交体验,自上线以来便吸引了无数玩家的目光。如今,这款游戏迎来了它…

知识运维概述

文章目录 知识运维研究现状技术发展趋势 知识运维 由于构建全量的行业知识图谱成本很高,在真实的场景落地过程中,一般遵循小步快走、快速迭代的原则进行知识图谱的构建和逐步演化。知识运维是指在知识图谱初次构建完成之后,根据用户的使用反馈…

WSL2-Ubuntu22.04-配置

WSL2-Ubuntu22.04-配置 准备1. WSL相关命令[^1]2. WSL2-Ubuntu22.04可视化3. WSL2 设置 CUDA4. 设置OpenGL 本文介绍了WSL2的基本使用方法及可视化,着重介绍了GPU和OpenGL的设置。 准备 名称版本windows11wsl2CUDA12.5 1. WSL相关命令1 查看已安装的wsl distribut…