【机器学习】逻辑回归:原理、应用与实践


鑫宝Code

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"


文章目录

  • 逻辑回归:原理、应用与实践
    • 引言
    • 1. 逻辑回归基础
      • 1.1 基本概念
      • 1.2 Sigmoid函数
    • 2. 模型构建
      • 2.1 线性决策边界
      • 2.2 参数估计
    • 3. 损失函数与优化
      • 3.1 交叉熵损失函数
      • 3.2 优化算法
    • 4. 多分类逻辑回归
    • 5. 实践应用与案例分析
      • 5.1 应用领域
      • 5.2 案例分析
    • 6. 逻辑回归的局限与挑战
    • 7. 结论

逻辑回归:原理、应用与实践

在这里插入图片描述

引言

逻辑回归(Logistic Regression)是一种广泛应用于分类问题的统计学方法,尽管其名称中含有“回归”二字,但它实际上是一种用于解决二分类或多分类问题的线性模型。逻辑回归通过使用逻辑函数(通常为sigmoid函数)将线性模型的输出映射到概率空间,从而预测某个事件发生的概率。本文将深入探讨逻辑回归的理论基础、模型构建、损失函数、优化算法以及实际应用案例,并简要介绍其在机器学习领域的地位和局限性。

1. 逻辑回归基础

1.1 基本概念

逻辑回归主要用于处理因变量为离散型数据的问题,尤其是二分类问题,如判断一个用户是否会购买某产品、一封邮件是否为垃圾邮件等。其核心思想是通过建立输入特征与输出类别之间的逻辑关系模型,来预测输出为某一类别的概率。

1.2 Sigmoid函数

在这里插入图片描述

Sigmoid函数是逻辑回归中的关键组件,其表达式为:

σ ( z ) = 1 1 + e − z \sigma(z) = \frac{1}{1 + e^{-z}} σ(z)=1+ez1

该函数将线性组合 z = θ T x z = \theta^T x z=θTx(其中$ \theta $为模型参数,(x)为输入特征向量)的输出映射到(0, 1)之间,可以解释为事件发生的概率。

2. 模型构建

2.1 线性决策边界

逻辑回归模型的形式化表达为:

P ( Y = 1 ∣ X = x ) = σ ( θ 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n ) P(Y=1|X=x) = \sigma(\theta_0 + \theta_1x_1 + \theta_2x_2 + ... + \theta_nx_n) P(Y=1∣X=x)=σ(θ0+θ1x1+θ2x2+...+θnxn)

其中, ( P ( Y = 1 ∣ X = x ) (P(Y=1|X=x) (P(Y=1∣X=x)表示给定特征(x)时,事件发生的概率;(\theta_i)为模型参数,(\theta_0)为截距项。

2.2 参数估计

逻辑回归通过极大似然估计(MLE)来确定模型参数。具体来说,是找到一组参数(\theta),使得训练数据的似然性最大化。

3. 损失函数与优化

3.1 交叉熵损失函数

在这里插入图片描述

逻辑回归常用的损失函数是交叉熵损失(Cross-Entropy Loss),它衡量了模型预测概率分布与真实概率分布的差异。对于二分类问题,损失函数定义为:

J ( θ ) = − 1 m ∑ i = 1 m [ y i log ⁡ ( p i ) + ( 1 − y i ) log ⁡ ( 1 − p i ) ] J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y_i \log(p_i) + (1-y_i) \log(1-p_i)] J(θ)=m1i=1m[yilog(pi)+(1yi)log(1pi)]

其中,(m)是样本数量,(y_i)是真实标签,(p_i)是模型预测的概率。

3.2 优化算法

常见的优化算法有梯度下降法及其变种(如批量梯度下降、随机梯度下降、小批量梯度下降)和拟牛顿法等。这些算法通过迭代更新模型参数,以逐步降低损失函数值,达到参数最优解。

4. 多分类逻辑回归

对于多分类问题,逻辑回归可以通过两种主要方式扩展:一对一(One-vs-One, OvO)和一对多(One-vs-All, OvA)。每种方法都有其适用场景和优缺点。
在这里插入图片描述

5. 实践应用与案例分析

5.1 应用领域

逻辑回归因其简单有效,在金融风控、医疗诊断、市场营销等多个领域有着广泛应用。例如,在银行信用评估中,逻辑回归模型可以用来预测客户违约的可能性。

5.2 案例分析

考虑一个简化版的银行贷款申请预测模型。通过收集申请人的年龄、收入、信用评分等特征,利用逻辑回归模型预测申请人是否会违约。通过特征工程、模型训练、交叉验证和调参等步骤,最终得到一个具有较高预测准确率的模型,为银行审批贷款提供决策支持。

首先,请确保安装了scikit-learn库。如果未安装,可以通过pip命令安装:

pip install scikit-learn

然后,你可以使用以下Python代码来实现逻辑回归:

# 导入必要的库
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.preprocessing import StandardScaler# 加载数据集,这里以鸢尾花数据集为例,但鸢尾花是多分类问题,我们简化为二分类
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data[:, :2]  # 只取前两列特征,简化为二维问题
y = (iris.target != 0).astype(int)  # 将目标转换为二分类问题(0和1)# 数据预处理:标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42)# 创建逻辑回归模型实例
logreg = LogisticRegression(max_iter=10000)# 训练模型
logreg.fit(X_train, y_train)# 预测测试集结果
y_pred = logreg.predict(X_test)# 输出模型性能指标
print("Accuracy:", metrics.accuracy_score(y_test, y_pred))
print("Precision:", metrics.precision_score(y_test, y_pred))
print("Recall:", metrics.recall_score(y_test, y_pred))# 输出模型系数和截距
print("Coefficients:", logreg.coef_)
print("Intercept:", logreg.intercept_)

这段代码演示了如何使用逻辑回归进行二分类任务的基本流程。注意,真实项目中可能需要更复杂的数据预处理和特征工程,以及更细致的模型调整和验证。此外,逻辑回归默认使用的是L2正则化,可以通过调整参数来改变正则化类型或强度。

6. 逻辑回归的局限与挑战

尽管逻辑回归在众多领域表现良好,但其也有一定的局限性:

  • 线性假设:逻辑回归假设特征与目标变量间存在线性关系,对于非线性关系可能无法很好地建模。
  • 处理大规模特征或高维数据时可能会遇到过拟合问题。
  • 对于类别极度不均衡的数据集,需要特别处理以避免模型偏向多数类。

7. 结论

逻辑回归作为经典的机器学习算法之一,凭借其简单、直观且易于实现的特点,在分类任务中依然保持重要地位。尽管面临一些局限性,通过引入正则化、特征选择、非线性变换等手段,逻辑回归能够适应更复杂的实际问题。随着深度学习等新技术的发展,逻辑回归也被融合进更复杂的模型结构中,继续发挥其独特价值。理解逻辑回归不仅有助于掌握基本的机器学习原理,也是深入探索现代机器学习技术的坚实基础。

End

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/339690.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Tensorflow入门实战 P02-彩色图片分类

目录 1、序言 2、主要代码 3、运行结果展示 (1)展示cifar10里面的20张图片 (2)预测的图片 (3)模型评估 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K…

Office在试图打开文件时遇到错误

如果是PPT、Excel,解决方法大体一致。 打开word文件,遇到如下图所示的报错信息。 解决办法: 法1(针对单一文件): 文件右键-【属性】-勾选【解除锁定(K)】 法2(一劳永逸,安全性自…

【Spring Cloud】微服务日志收集系统-ELK+Kafka

目录 任务背景本文相关文件资料Elasticsearch特性 LogstashKibanaELKELK的缺点引入消息中间件 ELKKafkaKafka概念 ELKKafka环境搭建1.将安装素材上传至服务器 cd /usr/local/soft2.防止Elasticsearch因虚拟内存问题启动失败3.创建镜像li/centos7-elasticsearch4.创建容器5.验证…

大模型备案项目补贴政策一览【保持更新】

大模型项目、AI类项目、大模型备案通过后等一篮子财政补贴政策 上海市 加快创新体系构建 1. 提升自主创新水平:对引领大模型发展或取得颠覆性突破的项目,最高给予1000万元补贴支持。 2. 加强算力资源保障:实施算力伙伴计划,对…

学生信息管理系统C++

设计目的 使学生进一步理解和掌握课堂上所学的面向对象C编程知识,巩固和加深学生对C面向对象课程的基本知识的理解和掌握。掌握C面向对象编程和程序调试的基本技能,学会利用C语言进行基本的软件设计,着重提高运用C面向对象语言解决实际问题的…

kali系统baopoWiFi密码

kali系统baopoWiFi密码,仅供学习 取决强大的密码字典,如果别人密码设置的足够安全,也无法破解成功,并不是100%破解 一、准备一个无线网卡,需要免驱动,最好知道频率2.4HGZ还是5.0GHZ 二、插上USB接口,vmware模拟器选择连接虚拟机 三、输入命…

超强算力 Orange Pi Kunpeng Pro 开发板基础测评与体验

目录 开箱体验资源简介系统启动连接网络登录系统通过桌面登录通过串口登录通过 SSH 登录配置散热风扇 算力测试MNIST示例MBNET示例 体验总结 大家好,我是 Hello 阿尔法,有幸接到 CSDN 的邀请参与 Orange Pi Kunpeng Pro 开发板的测评活动,本文…

基于数据驱动的自适应性小波构造(MATLAB)

以地震领域为例,时频变换能够刻画地震资料的时频特征,进而辅助地质构造解释。在各种时频分析工具中,连续小波变换CWT是描述地震资料时频特征的常用工具。选择合适的基小波是CWT的关键问题。对于不同类型的信号前人有针对性的设计了许多基小波…

基于单片机的超声波倒车雷达设计

摘 要:文 章设计了一种基于单片机的超声波倒车雷达系统,以 AT89C51 型单片机作为控制核心,集距离测量、显示,方位显示和危险报警于一体,以提高驾驶者在倒车泊车时的安全性和舒适性。本设计采用 Keil 软件对系统程序…

Linux开发工具(个人使用)

Linux开发工具 1.Linux yum软件包管理器1.1Linux安装程序有三种方式1.2注意事项1.3如何查看,安装,卸载软件包1.3.1查看软件包1.3.2安装软件包1.3.3卸载软件 2.Linux vim编辑器2.1vim的基本操作2.2vim正常模式命令集2.3vim底行模式命令集2.4vim配置 3.Lin…

就凭这张图,下订华为享界S9

文 | Auto芯球 作者 | 雷慢 冲啦!就在刚刚, 我们团队下订了一辆享界S9, 还琢磨买奔驰S级,宝马7系和奥迪A8的老板们, 是应该试试享界S9了, 至少先占个坑,8月底S9上市当天, 可以…

微型导轨在自动化制造中有哪些优势?

微型导轨在自动化制造中发挥重要作用,能够满足自动化设备制造中对精度要求较高的工艺环节。适用于自动装配线、自动检测设备和机器人操作等环节,推动了行业的进步与发展。那么,微型导轨在使用中有哪些优势呢? 1、精度高和稳定性强…

FPGA DMA IP核使用指南

摘要 本文旨在介绍FPGA中DMA(Direct Memory Access)IP核的使用,包括其基本框架、测试代码编写以及仿真波形的分析。DMA是一种允许外围设备直接与内存进行数据交换的技术,无需CPU的介入,从而提高了数据传输的效率。 1. 引言 在现代FPGA设计中,DMA IP核因其…

android睡眠分期图

一、效果图 做医疗类项目&#xff0c;经常会遇到做各种图表&#xff0c;本文做的睡眠分期图。 二、代码 引入用到的库 api joda-time:joda-time:2.10.1 调用代码 /*** 睡眠* 分期*/private SleepChartAdapter mAdapter;private SleepChartAttrs mAttrs;private List<SleepI…

C基础-标准库上

下:http://t.csdnimg.cn/LXa0J C 标准库是一组 C 内置函数、常量和头文件&#xff0c;比如 <stdio.h>、<stdlib.h>、<math.h>&#xff0c;等等。 目录 一. assert.h 二. ctype.h 三. errno.h 四. float.h 五.limits.h 六. locale.h 一. assert.h 源码…

基于梯度提升树回归模型的房地产价格估计

目录 1. 作者介绍2. 梯度提升树回归算法介绍2.1 算法原理2.2 算法讲解与分析 3. 实验过程3.1 数据集介绍3.2 代码介绍3.3 完整代码实现3.4 测试结果 参考文献 1. 作者介绍 雷强&#xff0c;男&#xff0c;西安工程大学电子信息学院&#xff0c;2023级研究生 研究方向&#xff…

论文精读--Swin Transformer

想让ViT像CNN一样分成几个block&#xff0c;做层级式的特征提取&#xff0c;从而使提取出的特征有多尺度的概念 Abstract This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. …

对人脸图像进行性别和年龄的判断

判断性别和年龄 导入必要的库加载预训练的人脸检测模型加载预训练的性别和年龄识别模型定义性别和年龄的标签列表创建Tkinter窗口&#xff1a;定义选择图片的函数&#xff1a;创建一个按钮&#xff0c;用于打开文件选择对话框定义显示图片的函数创建预测性别和年龄的函数创建预…

vue2 bug求助!!!(未解决,大概是浏览器缓存的问题或者是路由的问题)

我的vue2项目出现了一个超级恶心的bug 过程&#xff1a; 1 操作流程&#xff1a;页面a点击a标签->到页面b->页面b用户退出刷新页面->点击浏览器的返回按钮返回上一页 2 结果&#xff1a;返回页面后页面没有刷新导致用户名还显示着&#xff0c;页面没有发生任何变化&a…

基于Pytorch框架的深度学习ShufflenetV2神经网络十七种猴子动物识别分类系统源码

第一步&#xff1a;准备数据 17种猴子动物数据&#xff1a; self.class_indict ["白头卷尾猴", "弥猴", "山魈", "松鼠猴", "叶猴", "银色绒猴", "印度乌叶猴", "疣猴", "侏绒"…