香橙派 AIpro开发体验:使用YOLOV8对USB摄像头画面进行目标检测

香橙派 AIpro开发体验:使用YOLOV8对USB摄像头画面进行目标检测

  • 前言
  • 一、香橙派AIpro硬件准备
  • 二、连接香橙派AIpro
    • 1. 通过网线连接路由器和香橙派AIpro
    • 2. 通过wifi连接香橙派AIpro
    • 3. 使用vscode 通过ssh连接香橙派AIpro
  • 三、USB摄像头测试
    • 1. 配置ipynb远程开发环境
      • 1.1 创建一个video.ipynb 文件
      • 1.2 在远程主机中安装jupyter插件和python 插件
    • 2. 使用opencv读取USB摄像头进行拍照
    • 3. 使用opencv读取USB摄像头进行实时拍摄显示
  • 四、使用yolov8进行目标检测
    • 1. 使用torch cpu推理yolov8
    • 2. 使用opencv推理onnx模型
      • 2.1 导出yolov8的onnx模型
      • 2.2 onnx推理
    • 3. 使用npu 推理yolov8
      • 3.1 onnx转换为OM模型
      • 3.2 添加交换空间
      • 3.3 npu推理
  • 五、总结
  • 六、参考

前言

YOLOv8 作为最新的目标检测算法,以其高精度、高速度和易用性,成为许多开发者首选。而香橙派 AIpro 作为一款高性能嵌入式开发板,采用昇腾AI技术路线,集成图形处理器,拥有8GB/16GB LPDDR4X,8/20 TOPS AI算力,为 AI 应用提供了坚实的硬件基础。本篇文章将分享使用香橙派 AIpro 和 YOLOv8 结合 USB 摄像头进行物体检测的实战经验,并探讨其在实际应用中的价值。

一、香橙派AIpro硬件准备

香橙派 AIpro 开发板、USB 摄像头、电源适配器,网线,micro SD卡预烧录ubuntu系统。

img

二、连接香橙派AIpro

1. 通过网线连接路由器和香橙派AIpro

为了确保香橙派AIpro与网络的稳定连接,我们采用网线将其直接接入路由器。随后,在电脑上运行ip扫描器对内网进行全面扫描,成功识别到设备“orangepiaipro”,其IP地址为192.168.1.7。

img

2. 通过wifi连接香橙派AIpro

我们在登录香橙派AIpro之后,可以参照以下方法进行wifi的连接。
扫描wifi

sudo nmcli dev wifi

连接wifi

sudo nmcli dev wifi connect wifi名称 password wifi密码

3. 使用vscode 通过ssh连接香橙派AIpro

Tip:使用vscode可以像本地开发一样 ,在香橙派AIpro上进行远程开发。
安装vscode 插件
1.Remote - SSH
2.Remote - SSH: Editing
3.Remote Explorer
img
创建一个ssh连接,用户名默认为HwHiAiUser,登录密码默认为Mind@123

ssh HwHiAiUser@192.168.1.7

img
我们连接上之后打开桌面文件夹,在桌面进行开发
img
选择桌面路径
img
同时我们打开终端
img

三、USB摄像头测试

1. 配置ipynb远程开发环境

1.1 创建一个video.ipynb 文件

img
创建好之后保存在桌面文件夹内,vscode会同步这个目录的文件,方便我们进行开发。
img
img

1.2 在远程主机中安装jupyter插件和python 插件

我们对这两个主要的插件进行安装,其他插件会自动安装上。
img
然后我们打开video.ipynb 文件 选择我们需要的python版本。
python3.10.12 是系统自动的python版本。
base(python 3.9.2) 是anaconda的基础python版本。
我们应该使用conda 环境,最好是新建conda环境,来避免可能出现的环境依赖问题。

img

2. 使用opencv读取USB摄像头进行拍照

我们可能会遇到无法读取摄像头的错误,是因为没有权限访问摄像头。
img
直接对摄像头的权限进行降级,让当前用户可以访问

sudo  chmod 666 /dev/video0

我们在video.ipynb中进行代码编写,可以直接显示摄像头画面

import cv2
from IPython.display import display, Imagecamera = cv2.VideoCapture(0)
camera.set(cv2.CAP_PROP_FOURCC,cv2.VideoWriter_fourcc('M','J','P','G'))
if not camera.isOpened():raise IOError("Impossible d'ouvrir la webcam")
ret, frame = camera.read()
if not ret:raise IOError("Impossible de capturer une image")
display(Image(data=cv2.imencode('.jpg', frame)[1]))
camera.release()

运行效果如下:
img

3. 使用opencv读取USB摄像头进行实时拍摄显示

我们在video.ipynb中进行如下python代码编写,可以直接显示摄像头画面

import cv2
import numpy as np
from IPython.display import display, clear_output,Image# Initialize the camera
camera = cv2.VideoCapture(0)  # Use 0 for the default camera
# Set the codec to MJPG if it is supported
if camera.isOpened():camera.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'))
else:raise IOError("Cannot open the webcam")
try:while True:# Capture frame-by-frameret, frame = camera.read()if not ret:raise IOError("Cannot capture frame")# Display the imageclear_output(wait=True)# Afficher l'image capturéedisplay(Image(data=cv2.imencode('.jpg', frame)[1]))
finally:# When everything done, release the capturecamera.release()

本次使用的usb摄像头帧率比较低,所以有拖影,但从实时性的体验上来说,还是非常不错的。
在这里插入图片描述

四、使用yolov8进行目标检测

1. 使用torch cpu推理yolov8

本次测试使用的版本为yolov8.2 ,首先将yolov8中的ultralytics文件夹拖到香橙派AIpro的桌面上。

img
然后在video.ipynb中进行代码编写,调用yolov8库进行推理

import cv2
import numpy as np
from IPython.display import display, clear_output,Image
from ultralytics import YOLO
from time import time
# Load a model
model = YOLO('yolov8n.pt')  # pretrained YOLOv8n model
# Initialize the camera
camera = cv2.VideoCapture(0)  # Use 0 for the default camera
# Set the codec to MJPG if it is supported
if camera.isOpened():# camera.set(cv2.CAP_PROP_FRAME_WIDTH, 1280.0)# camera.set(cv2.CAP_PROP_FRAME_HEIGHT, 720.0)camera.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'))
else:raise IOError("Cannot open the webcam")
try:while True:# Capture frame-by-frameret, frame = camera.read()if not ret:raise IOError("Cannot capture frame")s = time()results = model(frame,conf=0.25,iou=0.5,verbose=False)print(time()-s)for r in results:im = r.plot()# Display the imageclear_output(wait=True)# Afficher l'image capturéedisplay(Image(data=cv2.imencode('.jpg', im)[1]))
finally:# When everything done, release the capturecamera.release()

直接调用原始库推理速度约为0.5s 一次

img

香橙派AIpro直接调用yolov8库使用torch cpu进行推理,推理时占用2核cpu,整体占用50%,如果多线程实现应该在0.2s左右,就是4-5帧。推理时内存占用也不高,表现还是不错的。

img

2. 使用opencv推理onnx模型

2.1 导出yolov8的onnx模型

img

2.2 onnx推理

编写python代码,使用opencv dnn推理onnx模型并读取usb摄像头进行检测

import cv2
import numpy as np
from IPython.display import display, clear_output,Image
from time import time
import cv2.dnn
from ultralytics.utils import ASSETS, yaml_load
from ultralytics.utils.checks import check_yaml
CLASSES = yaml_load(check_yaml('coco128.yaml'))['names']
colors = np.random.uniform(0, 255, size=(len(CLASSES), 3))
model: cv2.dnn.Net = cv2.dnn.readNetFromONNX("yolov8n.onnx")def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h):label = f'{CLASSES[class_id]} ({confidence:.2f})'color = colors[class_id]cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)def main(original_image):[height, width, _] = original_image.shapelength = max((height, width))image = np.zeros((length, length, 3), np.uint8)image[0:height, 0:width] = original_imagescale = length / 640blob = cv2.dnn.blobFromImage(image, scalefactor=1 / 255, size=(640, 640), swapRB=True)model.setInput(blob)outputs = model.forward()outputs = np.array([cv2.transpose(outputs[0])])rows = outputs.shape[1]boxes = []scores = []class_ids = []for i in range(rows):classes_scores = outputs[0][i][4:](minScore, maxScore, minClassLoc, (x, maxClassIndex)) = cv2.minMaxLoc(classes_scores)if maxScore >= 0.25:box = [outputs[0][i][0] - (0.5 * outputs[0][i][2]), outputs[0][i][1] - (0.5 * outputs[0][i][3]),outputs[0][i][2], outputs[0][i][3]]boxes.append(box)scores.append(maxScore)class_ids.append(maxClassIndex)result_boxes = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45, 0.5)detections = []for i in range(len(result_boxes)):index = result_boxes[i]box = boxes[index]detection = {'class_id': class_ids[index],'class_name': CLASSES[class_ids[index]],'confidence': scores[index],'box': box,'scale': scale}detections.append(detection)draw_bounding_box(original_image, class_ids[index], scores[index], round(box[0] * scale), round(box[1] * scale),round((box[0] + box[2]) * scale), round((box[1] + box[3]) * scale))# Initialize the camera
camera = cv2.VideoCapture(0)  # Use 0 for the default camera
# Set the codec to MJPG if it is supported
if camera.isOpened():# camera.set(cv2.CAP_PROP_FRAME_WIDTH, 1280.0)# camera.set(cv2.CAP_PROP_FRAME_HEIGHT, 720.0)camera.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'))
else:raise IOError("Cannot open the webcam")
try:while True:# Capture frame-by-frameret, frame = camera.read()if not ret:raise IOError("Cannot capture frame")s = time()main(frame)print(time()-s)# Display the imageclear_output(wait=True)# Afficher l'image capturéedisplay(Image(data=cv2.imencode('.jpg', frame)[1]))finally:# When everything done, release the capturecamera.release()

onnx推理使用单核cpu,推理一次的速度约为0.7s

img

3. 使用npu 推理yolov8

3.1 onnx转换为OM模型

将ONNX模型转换为OM模型,用CANN提供的ATC工具将其转换为昇腾AI处理器能识别的OM模型。

atc --framework=5 --model=yolov8n.onnx --input_format=NCHW --output=yolov8n --soc_version=Ascend310B4

atc命令中各参数的含义如下:
–framework:原始框架类型,5表示ONNX。
–model:ONNX模型文件存储路径。
–input_format:输入的格式定义
–output:离线om模型的路径以及文件名。
–soc_version:昇腾AI处理器的型号。
在服务器种执行npu-smi info命令进行查询,在查询到的“Name”前增加Ascend信息,例如“Name”对应取值为310B4,实际配置的–soc_version值为Ascend310B4。

img

3.2 添加交换空间

若出现以下错误则是内存不足,可以添加交换空间

BrokenPipeError: [Errno 32] Broken pipe
/usr/local/miniconda3/lib/python3.9/multiprocessing/resource_tracker.py:216: UserWarning: resource_tracker: There appear to be 97 leaked semaphore objects to clean up at shutdown
warnings.warn('resource_tracker: There appear to be %d ’

  1. 使用 root 用户执行:
su -
  1. 创建一个用于交换空间的文件,创建8GB的交换文件:
fallocate -l 8G /swapfile
chmod 600 /swapfile
  1. 设置交换文件
mkswap /swapfile
  1. 启用交换空间
swapon /swapfile
  1. 编辑/etc/fstab文件,使交换空间开机自动挂载:
echo '/swapfile none swap defaults 0 0' >> /etc/fstab

6.验证交换空间是否生效

free -m

通过top监控可以看到 转换过程占用内存大概 12G左右,不添加虚拟缓存内存是不够用的。
img

3.3 npu推理

编写python代码使用npu推理yolov8 对usb摄像头进行检测

import os# Verify the path
print(os.environ['LD_LIBRARY_PATH'])
import cv2
import numpy as np
from IPython.display import display, clear_output,Image
from time import time
from ais_bench.infer.interface import InferSession
from ultralytics.utils import ASSETS, yaml_load
from ultralytics.utils.checks import check_yamlCLASSES = yaml_load(check_yaml('coco128.yaml'))['names']colors = np.random.uniform(0, 255, size=(len(CLASSES), 3))model = InferSession(device_id=0, model_path="yolov8n.om")def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h):label = f'{CLASSES[class_id]} ({confidence:.2f})'color = colors[class_id]cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)def main(original_image):[height, width, _] = original_image.shapelength = max((height, width))image = np.zeros((length, length, 3), np.uint8)image[0:height, 0:width] = original_imagescale = length / 640blob = cv2.dnn.blobFromImage(image, scalefactor=1 / 255, size=(640, 640), swapRB=True)begin_time = time()outputs = model.infer(feeds=blob, mode="static")end_time = time()print("om infer time:", end_time - begin_time)outputs = np.array([cv2.transpose(outputs[0][0])])rows = outputs.shape[1]boxes = []scores = []class_ids = []for i in range(rows):classes_scores = outputs[0][i][4:](minScore, maxScore, minClassLoc, (x, maxClassIndex)) = cv2.minMaxLoc(classes_scores)if maxScore >= 0.25:box = [outputs[0][i][0] - (0.5 * outputs[0][i][2]), outputs[0][i][1] - (0.5 * outputs[0][i][3]),outputs[0][i][2], outputs[0][i][3]]boxes.append(box)scores.append(maxScore)class_ids.append(maxClassIndex)result_boxes = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45, 0.5)detections = []for i in range(len(result_boxes)):index = result_boxes[i]box = boxes[index]detection = {'class_id': class_ids[index],'class_name': CLASSES[class_ids[index]],'confidence': scores[index],'box': box,'scale': scale}detections.append(detection)draw_bounding_box(original_image, class_ids[index], scores[index], round(box[0] * scale), round(box[1] * scale),round((box[0] + box[2]) * scale), round((box[1] + box[3]) * scale))# Initialize the camera
camera = cv2.VideoCapture(0)  # Use 0 for the default camera# Set the codec to MJPG if it is supported
if camera.isOpened():# camera.set(cv2.CAP_PROP_FRAME_WIDTH, 1280.0)# camera.set(cv2.CAP_PROP_FRAME_HEIGHT, 720.0)camera.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'))
else:raise IOError("Cannot open the webcam")# Define the codec and create VideoWriter object
# Get the width and height of the frames
frame_width = int(camera.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(f"Frame width: {frame_width}, Frame height: {frame_height}")# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter('output.avi', fourcc, 30.0, (frame_width, frame_height))  # 20.0 is the frame ratetry:_start_time = time()while time() - _start_time < 5:# Capture frame-by-frameret, frame = camera.read()if not ret:raise IOError("Cannot capture frame")main(frame)out.write(frame)# Display the image# clear_output(wait=True)# # Afficher l'image capturée# display(Image(data=cv2.imencode('.jpg', frame)[1]))finally:# When everything done, release the capturecamera.release()out.release()

与前面torch和onnx 的推理相比,基于昇腾CANN的推理效果,在速度上有了质的飞跃。

img
yolov8使用npu推理一帧的速度达到了惊人的0.017s,相比cpu提升了20-30倍。

img

五、总结

昇腾CANN框架的优势:

  1. 推理速度显著提升: 在使用YOLOv8模型进行推理时,我发现昇腾CANN的单帧处理速度能达到0.017秒,相比CPU提升了20-30倍,这对于实时性要求高的应用场景(如自动驾驶、安防监控)至关重要。
  2. 兼容性与扩展性强: 昇腾CANN支持多种模型和算法,并随着昇腾硬件的升级不断提升性能,为开发者提供了更广阔的选择空间。
    香橙派AIpro开发板的优势:
  3. 硬件性能出色: 能够流畅运行复杂的AI算法和模型,满足我的开发需求。
  4. 易用性高: 简单的设置和配置就能将AI应用部署到开发板上进行测试和验证,极大提升了开发效率。
  5. 扩展性强: 丰富的接口方便连接其他硬件设备,为开发更复杂的AI应用提供了更多可能性。

总的来说,我对其高效的推理速度、便捷的开发体验以及强大的扩展性印象深刻。
香橙派AIpro开发板为开发者提供了一个优秀的平台,可以方便地体验和利用昇腾CANN强大的AI推理能力。我相信,随着昇腾CANN和香橙派AIpro开发板的不断发展,它们将进一步推动AI技术的应用和普及。

六、参考

CANN开发指南
香橙派官网
昇腾论坛

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/339844.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言:(动态内存管理)

目录 动态内存有什么用呢 malloc函数 开辟失败示范 free函数 calloc函数 realloc函数 当然realooc也可以开辟空间 常⻅的动态内存的错误 对NULL指针的解引⽤操作 对动态内存开辟的空间越界访问 对⾮动态开辟内存使⽤free释放 使⽤free释放⼀块动态开辟内存的⼀部分 …

Mac逆向Electron应用

工具库 解压asar文件 第一步 找到应用文件夹位置 打开活动监视器&#xff1a; 搜索相关应用 用命令行打开刚才复制的路径即可 open Applications/XXX.app/Contents/Resources/app第二步 解压打包文件 解压asar文件

[深度学习]yolov10+deepsort+pyqt5实现目标追踪

YOLOv10DeepSORTPyQt5实现目标追踪系统 在现代智能监控系统中&#xff0c;目标追踪技术扮演着至关重要的角色。结合YOLOv10&#xff08;一种先进的实时目标检测算法&#xff09;与DeepSORT&#xff08;一种多目标追踪算法&#xff09;&#xff0c;并通过PyQt5构建用户界面&…

StretchSense:将手部动作无缝集成到Xsens全身动捕系统中

在动画制作中逼真的手部动作可以大幅提升角色的情感表现能力&#xff0c;这将使观众更加轻易的走进角色&#xff0c;感受角色的情感变化并更加快速的了解角色的性格特点。如性格外向的角色将拥有更加复杂的手部动作表达。因此有效加强角色的手部动画真实度有助于吸引更多的观众…

element table表格行列合并span-method,根据数据动态行列合并

表格行列合并需要用到 table的方法 span-method 根据数据来进行动态的行列合并&#xff0c;实例如下&#xff1a; <el-table:data"tableData":span-method"objectSpanMethod" style"width: 100%"><el-table-columnprop"key"l…

PCIe的链路状态

目录 概述 链路训练的目的 两个概念 下面介绍LTSSM状态机 概述 PCie链路的初始化过程较为复杂&#xff0c;Pcie总线进行链路训练时&#xff0c;将初始化Pcie设备的物理层&#xff0c;发送接收模块和相关的链路状态信息&#xff0c;当链路训练成功结束后&#xff0c;PCIe链…

xcode开发swift允许发送http请求设置

Xcode 现在新建项目默认只支持HTTPS请求&#xff0c;认为HTTP请求不安全&#xff0c;所以不支持。但是开发环境一般都是http模式&#xff0c;所以需要单独配置才可以访问。 需要到项目的设置里面&#xff0c;点击info&#xff0c;如果没有App Transport Security Setting这一项…

c# - - - winform 右下角气球提示通知

c# - - - winform 右下角气球提示通知 winform 右下角气球提示通知 1.1 winform 右下角气球提示通知 在工具箱中点击 NotifyIcon 控件&#xff0c;拖动到 Form1 窗体上添加这个控件。 在“提示”按钮的点击事件中写气球提示通知内容。 public partial class Form1 : Form {…

民国漫画杂志《时代漫画》第29期.PDF

时代漫画29.PDF: https://url03.ctfile.com/f/1779803-1248635405-bf3c87?p9586 (访问密码: 9586) 《时代漫画》的杂志在1934年诞生了&#xff0c;截止1937年6月战争来临被迫停刊共发行了39期。 ps: 资源来源网络!

《探索Stable Diffusion:AI绘画的创意之路与实战秘籍》

《Stable Diffusion AI 绘画从提示词到模型出图》介绍了 Stable Diffusion AI 绘画工具及其使用技巧。书中内容分为两部分&#xff1a;“基础操作篇”&#xff0c;讲解了 SD 文生图、图生图、提示词、模型、ControlNet 插件等核心技术的应用&#xff0c;帮助读者快速从新手成长…

算法思想总结:哈希表

一、哈希表剖析 1、哈希表底层&#xff1a;通过对C的学习&#xff0c;我们知道STL中哈希表底层是用的链地址法封装的开散列。 2、哈希表作用&#xff1a;存储数据的容器&#xff0c;插入、删除、搜索的时间复杂度都是O&#xff08;1&#xff09;&#xff0c;无序。 3、什么时…

YOLOv10训练教程—用YOLOv10训练自己的数据集

文章目录 YOLOv10简介亮点模型介绍 下载源码环境配置准备数据集训练模型&#xff1a;命令行py文件 验证模型推理参考文献 ✨✨✨✨立志真正解决大家问题&#xff0c;只写精品博客文章&#xff0c;感谢关注&#xff0c;共同进步✨✨✨✨ YOLOv9还没捂热乎&#xff0c;YOLOv10就推…

【传知代码】探索视觉与语言模型的可扩展性(论文复现)

前言&#xff1a;在数字化时代的浪潮中&#xff0c;我们见证了人工智能&#xff08;AI&#xff09;技术的飞速发展&#xff0c;其中视觉与语言模型作为两大核心领域&#xff0c;正以前所未有的速度改变着我们的生活和工作方式。从图像识别到自然语言处理&#xff0c;从虚拟现实…

防雷接地测试方法及注意事项

一、防雷接地的测试方法 检测避雷针、高层建筑物等设施的接地电阻&#xff0c;接雷后能否顺畅导入大地。 1、你先找到防雷接地网的接地引线或等电位联接箱。 2、用接地电阻测测试仪测接地电阻。 &#xff08;有两根测试桩0.4M的要插入泥土&#xff0c;一根距测试点20米&…

抽屉式备忘录(共25041字)

Sing Me to Sleep <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>与妖为邻的备忘录</title&g…

什么是Swagger UI ,swagger ui 的authorization怎么获取?

什么是Swagger UI Swagger UI 是一个用于可视化和交互式地展示API文档的工具。它是Swagger&#xff08;现称为OpenAPI&#xff09;生态系统的一部分&#xff0c;旨在帮助开发者和API用户更好地理解、测试和调试API。 主要功能和作用 1. API文档自动生成&#xff1a; Swagge…

工业4.0利器:MES系统

工业4.0利器&#xff1a;MES系统 &#x1f604;生命不息&#xff0c;写作不止 &#x1f525; 继续踏上学习之路&#xff0c;学之分享笔记 &#x1f44a; 总有一天我也能像各位大佬一样 &#x1f3c6; 博客首页 怒放吧德德 To记录领地 &#x1f31d;分享学习心得&#xff0c;…

AI雷达小程序个人名片系统源码 PHP+MYSQL组合开发 带完整的安装代码包以及搭建教程

系统概述 随着移动互联网的普及和社交媒体的兴起&#xff0c;人们获取信息和建立联系的方式发生了翻天覆地的变化。传统的纸质名片已经无法满足现代人的需求&#xff0c;而小程序作为一种轻量级应用&#xff0c;具有无需安装、即开即用、易于分享等特点&#xff0c;成为了个人…

【JavaScript】---DOM操作1:获取元素

【JavaScript】—DOM操作1&#xff1a;获取元素 文章目录 【JavaScript】---DOM操作1&#xff1a;获取元素一、什么是DOM&#xff1f;1.1 概念1.2 图例演示 二、查找HTML元素2.1 getElementById()2.2 getElementsByTagName()2.3 getElementsByClassName()2.4 querySelector()2.…

web-上传项目文件夹到Git远程仓库

Git初识 概念&#xff1a;一个免费开源&#xff0c;分布式的代码版本控制系统&#xff0c;帮助开发团队维护代码 作用&#xff1a;记录代码内容&#xff0c;切换代码版本&#xff0c;多人开发时高效合并代码内容 检验成功 打开bash终端&#xff08;git专用&#xff09;命令…