力扣174题动态规划:地下城游戏(含模拟面试)

❤️❤️❤️ 欢迎来到我的博客。希望您能在这里找到既有价值又有趣的内容,和我一起探索、学习和成长。欢迎评论区畅所欲言、享受知识的乐趣!

  • 推荐:数据分析螺丝钉的首页

  • 关注微信公众号 数据分析螺丝钉 免费领取价值万元的python/java/商业分析/数据结构与算法学习资料
    在这里插入图片描述

  • 导航

    • LeetCode解锁1000题: 打怪升级之旅:每题都包括3-5种算法,以及详细的代码实现,刷题面试跳槽必备
    • 漫画版算法详解:通过漫画的形式和动态GIF图片把复杂的算法每一步进行详细可视解读,看一遍就掌握

期待与您一起探索技术、持续学习、一步步打怪升级 欢迎订阅本专栏❤️❤️

在本篇文章中,我们将详细解读力扣第174题“地下城游戏”。通过学习本篇文章,读者将掌握如何使用动态规划来解决这一问题,并了解相关的复杂度分析和模拟面试问答。每种方法都将配以详细的解释和图解,以便于理解。

问题描述

力扣第174题“地下城游戏”描述如下:

给定一个二维的地下城,其中每个格子代表勇士的血量增减。勇士从左上角出发,需要到达右下角的公主所在的格子。勇士在任何时候的血量都不能小于1。请你计算出勇士初始需要的最小血量。

示例 1:

输入: 
[[-2, -3, 3],[-5, -10, 1],[10, 30, -5]
]
输出: 7
解释: 最少需要7点血量到达右下角,从而确保在任何时候血量都不低于1。

解题思路

方法:动态规划
  1. 初步分析

    • 从右下角到左上角进行动态规划,计算每个位置的最小血量需求。
    • 使用一个二维数组 dp,其中 dp[i][j] 表示从位置 (i, j) 出发到达终点所需的最小初始血量。
  2. 步骤

    • 初始化 dp 数组,大小为地下城数组的大小。
    • 从右下角开始,逆向计算每个位置的最小初始血量。
    • 逐步更新 dp 数组,直到计算出左上角的最小初始血量。
代码实现
def calculateMinimumHP(dungeon):if not dungeon or not dungeon[0]:return 0m, n = len(dungeon), len(dungeon[0])dp = [[0] * n for _ in range(m)]dp[-1][-1] = max(1, 1 - dungeon[-1][-1])for i in range(m - 2, -1, -1):dp[i][-1] = max(1, dp[i + 1][-1] - dungeon[i][-1])for j in range(n - 2, -1, -1):dp[-1][j] = max(1, dp[-1][j + 1] - dungeon[-1][j])for i in range(m - 2, -1, -1):for j in range(n - 2, -1, -1):min_health_on_exit = min(dp[i + 1][j], dp[i][j + 1])dp[i][j] = max(1, min_health_on_exit - dungeon[i][j])return dp[0][0]# 测试案例
dungeon = [[-2, -3, 3],[-5, -10, 1],[10, 30, -5]
]
print(calculateMinimumHP(dungeon))  # 输出: 7
图解

假设输入为:

[[-2, -3, 3],[-5, -10, 1],[10, 30, -5]
]

计算步骤如下:

  1. 初始化 dp 数组:
[[0, 0, 0],[0, 0, 0],[0, 0, 1]
]
  1. 填充最右列:
[[0, 0, 0],[0, 0, 6],[0, 0, 1]
]
  1. 填充最下行:
[[0, 0, 4],[0, 0, 6],[0, 0, 1]
]
  1. 计算其余位置:
[[5, 4, 4],[6, 11, 6],[1, 1, 1]
]

最终结果为 dp[0][0],即最小初始血量为 7

复杂度分析

  • 时间复杂度:O(m * n),其中 m 和 n 分别是地下城的行数和列数。需要遍历整个地下城。
  • 空间复杂度:O(m * n),需要额外的二维数组来存储每个位置的最小初始血量。

模拟面试问答

问题 1:你能描述一下如何解决这个问题的思路吗?

回答:我们需要计算勇士从左上角到达右下角所需的最小初始血量。可以使用动态规划,从右下角到左上角逆向计算每个位置的最小初始血量。通过二维数组 dp 来存储每个位置的最小初始血量,逐步更新 dp 数组,最终得到左上角的最小初始血量。

问题 2:为什么选择使用动态规划来解决这个问题?

回答:动态规划可以高效地解决最优化问题,通过将问题分解为子问题,逐步求解每个子问题的最优解,最终得到整个问题的最优解。对于地下城游戏问题,动态规划可以有效地计算每个位置的最小初始血量,确保勇士在任何时候血量不低于1。

问题 3:你的算法的时间复杂度和空间复杂度是多少?

回答:算法的时间复杂度是 O(m * n),其中 m 和 n 分别是地下城的行数和列数。需要遍历整个地下城。空间复杂度是 O(m * n),需要额外的二维数组来存储每个位置的最小初始血量。

问题 4:在代码中如何处理负值的情况?

回答:在计算每个位置的最小初始血量时,通过 max(1, dp[i + 1][j] - dungeon[i][j])max(1, dp[i][j + 1] - dungeon[i][j]) 来确保血量不低于1,无论地下城中的值是正是负。

问题 5:你能解释一下动态规划的工作原理吗?

回答:动态规划通过将问题分解为子问题,逐步求解每个子问题的最优解。对于地下城游戏问题,从右下角到左上角逆向计算每个位置的最小初始血量,逐步更新 dp 数组,最终得到左上角的最小初始血量。通过比较从右侧和下方到达当前格子的最小血量,确定当前格子的最小初始血量。

问题 6:在代码中如何确保勇士在任何时候血量不低于1?

回答:通过 max(1, dp[i + 1][j] - dungeon[i][j])max(1, dp[i][j + 1] - dungeon[i][j]) 来计算每个位置的最小初始血量,确保血量不低于1。最终得到的 dp[0][0] 即为勇士需要的最小初始血量。

问题 7:你能举例说明在面试中如何回答优化问题吗?

回答:在面试中,如果面试官问到如何优化算法,我会首先分析当前算法的瓶颈,如时间复杂度和空间复杂度,然后提出优化方案。例如,对于地下城游戏问题,可以通过优化空间复杂度,将二维数组优化为一维数组来减少空间消耗。解释其原理和优势,最后提供代码实现和复杂度分析。

问题 8:如何验证代码的正确性?

回答:通过多个测试案例验证代码的正确性,包括正常情况和边界情况。例如,测试输入为负值、正值、零值的情况,确保代码在各种情况下都能正确运行。

问题 9:你能解释一下地下城游戏问题的重要性吗?

回答:地下城游戏问题在动态规划和最优化问题中具有重要意义。通过解决这个问题,可以提高对动态规划的理解和应用能力。对于游戏开发和实际应用中的路径规划和资源分配问题,也具有重要参考价值。

问题 10:在处理大数据集时,算法的性能如何?

回答:算法的时间复杂度是 O(m * n),处理大数据集时性能较好。需要遍历整个地下城,确保算法能够高效地处理大数据集,并快速得到结果。通过优化空间复杂度,可以进一步提高性能。

总结

本文详细解读了力扣第174题“地下城游戏”,通过动态规划方法高效地解决了这一问题,并提供了详细的图解和模拟面试问答。

🌹🌹如果觉得这篇文对你有帮助的话,记得一键三连关注、赞👍🏻、收藏是对作者最大的鼓励,非常感谢 ❥(^_-)

❤️❤️关注公众号 数据分析螺丝钉 回复 学习资料 领取高价值免费学习资料❥(^_-)
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/340085.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

贝锐向日葵分组策略:减少重复操作,提升管理效率

面对大数量级的IT设备,如何高效实施管理是运维的关键所在,如何快速准确的对大量的设备按需分组,则是管理精准触达的第一步。 但是,传统的分组方式应付少量设备还可行,设备数量级一旦来到上千台甚至更多时,…

计算机视觉与模式识别实验2-1 角点检测算法(Harris,SUSAN,Moravec)

文章目录 🧡🧡实验流程🧡🧡Harris算法SUSAN算法Moravec算法 🧡🧡全部代码🧡🧡 🧡🧡实验流程🧡🧡 Harris算法 Harris算法实现步骤&…

重学java 59.Properties属性集集合嵌套集合下总结

不要咀嚼小小悲观,而忘掉整个世界 —— 24.6.3 一、Properties集合(属性集) 1.概述 Properties 继承 于HashTable 2.特点 a、key唯一,value可重复 b、无序 c、无索引 d、线程安全 e、不能存null键,null值 f、Propertie…

AI 赋能前端 -- 文本内容概要生成

幸福不在于你获得了什么,而在于你比他人多获得了什么 是比较出来的 大家好,我是柒八九。一个专注于前端开发技术/Rust及AI应用知识分享的Coder 此篇文章所涉及到的技术有 OpenAILangChainRust/WebAssemblyWeb Workerreact+ts+vite配置环境变量(env)因为,行文字数所限,有些概…

前端将DOM元素导出为图片

前端工作中经常会用到把一些元素导出,比如表格,正好项目有遇到导出为excel和导出为图片,就都封装实现了一下,以供其他需求的开发者使用: 1.导出为文档 这个说白了就是下载的功能,传过去检索参数&#xff…

小熊家务帮day10- 门户管理

门户管理 1 门户介绍1.1 介绍1.2 常用技术方案 2 缓存技术方案2.1 需求分析2.1.1 C端用户界面原型2.1.2 缓存需求2.1.3 使用的工具 2.2 项目基础使用2.2.1 项目集成SpringCache2.2.2 测试Cacheable需求Service测试 2.1.3 缓存管理器(设置过期时间)2.1.4 …

使用软件分享--剪映(不需要会员版)剪映 Jianying_pro_3_2_0_8778_beta9_jianyingpro_beta(Windows)

专栏介绍:本专栏主要分享一些实用的软件(Po Jie版); 声明1:软件不保证时效性;只能保证在写本文时,该软件是可用的;不保证后续时间该软件能一直正常运行;不保证没有bug&am…

关于网络编程

目录 1、InetAdress类 2、Socket套接字 3、UDP数据报套接字编程 (1)DatagramSocket 类 (2)DatagramPacket类 (3)处理无连接问题 UdpEchoServer.java UdpEchoClient.java 4、TCP流套接字编程 &…

机器学习之数学基础(六)~时间复杂度和空间复杂度

目录 算法背景 background 1. 时间复杂度 Time Complexity 1.1 时间复杂度分类 1.1.1 O(1) 常数阶 1.1.2 O(n) 线性阶 1.1.3 O(n^2) 平方阶 1.1.4 O(logn) 对数阶 1.1.5 O(nlogn) 线性对数阶 1.1.6 O(2^n) 指数阶 1.1.7 O(n!) 阶乘阶 1.1.8 时间复杂度分类 1.2 时…

基于FPGA的SystemVerilog练习

文章目录 一、认识SystemVerilogSystemVerilog的语言特性SystemVerilog的应用领域SystemVerilog的优势SystemVerilog的未来发展方向 二、流水灯代码流水灯部分testbench仿真文件 三、用systemVerilog实现超声波测距计时器测距部分led部分数码管部分采样部分顶层文件引脚绑定效果…

华为昇腾310B初体验,OrangePi AIpro开发板使用测评

0、写在前面 很高兴收到官方的OrangePi AIpro开发板测试邀请,在过去的几年中,我在自己的博客写了一系列有关搭载嵌入式Linux系统的SBC(单板计算机)的博文,包括树莓派4系列、2K1000龙芯教育派、Radxa Rock5B、BeagleBo…

001----flask

flask---001 flask与django对比今日概要问答今日详细1.flask快速使用1.2 快速使用flask1.3 用户名密码登录 flask与django对比 django是个大而全的框架,flask是一个轻量级的框架。 django内部为我们提供了非常多的组件:orm/session/cookie/admin/from/mo…

mysql 分区

目标 给一个表(半年有800万)增加分区以增加查询速度 约束 分区不能有外键否则会报错 https://blog.csdn.net/yabingshi_tech/article/details/52241034 主键 按照时间列进行分区 https://blog.csdn.net/winerpro/article/details/135736454 参看以…

时序预测 | Matlab灰色-马尔科夫预测

目录 预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab灰色-马尔科夫预测 灰色马尔科夫预测(Grey-Markov Prediction)是一种用于时间序列预测的方法,它结合了灰色系统理论和马尔科夫链模型。灰色系统理论是一种非参数化的预测方法…

[vue2项目]vue2+supermap[mapboxgl]+天地图之地图的初始化

Supermap参考教程 天地图 一、安装 1、终端:npm install supermap/vue-iclient-mapboxgl 2、在package.json文件的dependencies查看supermap/vue-iclient-mapboxgl依赖是否安装成功。 3、在mian.js全局引入 import VueiClient from supermap/vue-iclient-mapboxgl; Vue.use(…

研学活动报名收集材料怎么写?教程来了!

研学活动作为学校教育的重要组成部分,不仅能够拓宽学生的视野,还能促进家校沟通。学生们报名还是十分积极踊跃的,然而研学活动报名收集材料该怎么写却困扰着不少老师,其实只需要把姓名和联系方式等收集全就可以了,主要…

typescript --object对象类型

ts中的object const obj new Object()Object 这里的Object是Object类型,而不是JavaScript内置的Object构造函数。 这里的Object是一种类型,而Object()构造函数表示一个值。 Object()构造函数的ts代码 interface ObjectConstructor{readonly prototyp…

UMG绝对坐标与局部空间

在 Unreal Engine 的 UMG(Unreal Motion Graphics)中,“绝对坐标”和“局部空间”是两个常见的概念,主要用于描述 UI 元素的位置和大小。 概念与区别 绝对坐标(Absolute Coordinates):这是指相…

[数据集][目标检测]RSNA肺炎检测数据集VOC+YOLO格式6012张1类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):6012 标注数量(xml文件个数):6012 标注数量(txt文件个数):6012 标注…

彩光大放异彩!《智慧园区以太全光网络建设技术规程》应用案例征集活动结果公布

近日,中国建筑业协会绿色建造与智能建筑分会正式公布了《智慧园区以太全光网络建设技术规程》应用案例征集活动的结果。本次活动旨在推广和应用该规程,进一步推动智慧园区的数字化、智慧化、绿色化建设。众多优秀项目在征集活动中脱颖而出,展示了规程在实际应用中的显著成效。评…