【C语言】结构体(及位段)

               你好!感谢支持孔乙己的新作,本文就结构体与大家分析我的思路。

希望能大佬们多多纠正及支持 !!!

7edab4be0868428c9c0a750f6d39f83d.jpeg

个人主页:爱摸鱼的孔乙己-CSDN博客  欢迎 互粉哦🙈🙈!

目录

1. 声明结构体

1.1. 结构体的声明

1.2. 结构体变量的创建与初始化

1.3. 结构体的特殊声明

1.4. 结构体的自引用

2. 结构体内存对齐

 2.1. 对齐规则

         2.1.1. 常规内存对齐

         2.1.2. 嵌套结构体内存对齐

 2.2. 为什么存在结构体对齐

         2.2.1. 平台原因(移植原因)

         2.2.2. 性能原因

         2.2.3. 改善方法

 2.3. 修改默认对齐数

3. 结构体实现传参

4 . 位段

  4.1. 什么是位段

  4.2. 位段的内存分配

  4.3. 位段的跨平台问题

  4.4. 位段的应用

  4.5. 位段注意事项


 e9ee10e11cde440d977cf2cb49399912.jpeg

7a4f0716e2a04268bb0c64386067a51e.gif


1. 声明结构体


 Leading  ~~   结构体(struct)是一种用户自定义的数据类型,它可以包含多个不同数据类型的成员变量,这些成员变量可以根据需要进行组合,形成一个新的数据类型。结构体可以用来表示现实世界中的复杂数据结构,比如表示一个学生或者一辆车的信息等。

 1.1. 结构体的声明

结构体是⼀些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。  

     例如,描述一个学生的信息:

struct student  
{char name[20];//姓名int age;//年龄char sex[9];//性别char number[20];//学号}; 

         其中,包含学生的姓名、年龄、性别、学号这些字符数组,整形数据等等不同数据类型的成员变量。

1.2. 结构体变量的创建与初始化

          创建结构体变量,对其进行初始化,可以依次进行赋值(输入数据),也可以使用“ . +成员变量名 ”来指定顺序赋值(输入数据 )。

#include <stdio.h>
struct Stu
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//学号
};
int main()
{//按照结构体成员的顺序初始化struct Stu s = { "张三", 20, "男", "20230818001" };printf("name: %s\n", s.name);printf("age : %d\n", s.age);printf("sex : %s\n", s.sex);printf("id : %s\n", s.id);//按照指定的顺序初始化struct Stu s2 = { .age = 18, .name = "lisi", .id = "20230818002", .sex = 
"⼥" };printf("name: %s\n", s2.name);printf("age : %d\n", s2.age);printf("sex : %s\n", s2.sex);printf("id : %s\n", s2.id);return 0;
}

1.3. 结构体的特殊声明

          在声明结构体的时候,可以不完全的声明。当然,这样声明的结构体只能在创建的时候对其      进行赋值(输入数据)。

//创建匿名结构体变量
struct {char name[20];int age;double height;
} S = { "李四", 23, 1.82 };

          如果要再次使用,必须要对结构体类型重命名(使用typedef对其重命名)如下:

//对匿名结构体重命名
typedef struct Stu 
{char name[20];int age;double height;
}Stu;

1.4. 结构体的自引用

在结构中包含⼀个类型为该结构本⾝的成员是否可以? ⽐如,定义⼀个链表的节点,如下:
struct Node
{int data;struct Node next;
};

      究其根本,其实是行不通的,毕竟在一个结构体中再包含一个同类型的结构体变量,内存就会   变得无穷大,我们可以采取指针的方式进行自引用,如下:

struct Node
{int data;struct Node* next;
};
在结构体自引⽤使用的过程中,夹杂了 typedef 对匿名结构体类型重命名,也容易引⼊问题,    看看下面的代码,可⾏吗?
typedef struct
{int data;Node* next;
} Node;
答案是不行的,因为Node是对前⾯的匿名结构体类型的重命名产⽣的,但是在匿名结构体内部提前使用Node类型来创建成员变量,这是不行的。
解决方案如下: 定义结构体不要使⽤匿名结构体了 !
typedef struct Node
{int data;struct Node* next;
} Node;

268d4e462d664d0f99e9588e4bd4be46.jpeg


2. 结构体内存对齐


       2.1. 对齐规则

              首先,我们来了解一下结构体内存对齐规则,如下:

1.  结构体的第一个成员对齐到结构体变量起始位置偏移量为0的地址。
2.  其他成员变量要对齐到对齐数的整数倍的地址处。
  •      对齐数 = 编译器默认的一个对齐数与该成员变量大小的较小值
  •      Visual Stdio 2022中默认值为8(字节)
  •      Linux中gcc没有对齐数,因此对齐数就是成员自身的大小
3. 结构体总大小为最大对齐数 (结构体中每个成员变量都有⼀个对齐数,所有对齐数中最⼤        的)的整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,
    结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。

          我们通过一些例题具体分析结构体对齐的场景,如下:

  2.1.1. 常规内存对齐

struct s1
{char c1;int i;char c2;
};

 在s1结构体中,有char类型的c1,int类型的i以及char类型的c2,如果仅仅从类型字节大小来说,这里应该占用1+4+1=6(字节),但由于结构体中存在内存对齐,结果却是12(字节)。

究其原因, 我们分析一下这些变量在内存中的排布情况:

 

        首先,结构体的第一个成员对齐到结构体变量起始位置偏移量为0的地址,所以我们将char (绿色区块)放在起始位置偏移量为0的地址。对于int  i (占用4个字节)要对齐到对齐数的整数倍(VS中默认对齐数是8,int是4,因此对齐数取4)的地址处,也就是偏移量为4的地址处,因此前3个字节将会被浪费。紧接着char c2(黄色区块)默认对齐数是1,又根据“ 结构体总大小为最大对齐数 (结构体中每个成员变量都有⼀个对齐数,所有对齐数中最⼤的)的整数倍”,也就是4的整数倍(12),因此也会损耗3个字节空间。

2.1.2. 嵌套结构体内存对齐

    根据上述结果推算出struct S3在内存中占用16个字节,将其嵌套在struct S4中结果会是多少呢

struct S3
{double d;char c;int i;
};struct S4
{char c1;struct S3 s3;double d;
};
int main() {//printf("%d\n", sizeof(struct S3));printf("%zd\n", sizeof(struct S4));return 0;
}

这里我们就要注意对齐的最后一条规则:

4. 如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,
    结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。

 从上述源码中,不难看出嵌套结构体成员(struct S3)的最大对齐数就是8,以及S4中最大对齐数也是8,因此结构体(struct S4)的大小就8的整数倍,从内存排列情况如下:

        结果,无疑就是占用32个字节 ! !!

        

 

       2.2. 为什么存在结构体对齐

2.2.1. 平台原因(移植原因)

         毕竟,不是所有硬件平台都能访问任意地址上的任意数据,对于某些硬件平台只能在某些地址处取某些特特定类型的数据,否则会发生硬件异常。

2.2.2. 性能原因

         数据结构(尤其是栈)应该尽可能在自然边界对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存仅需要一次访问。假如一个处理器总是从内存中取8个字节,则地址必须是8的倍数。假如我们能保证所有的double类型的数据的地址都对齐成8的倍数,那么就可以用一个内存操作来读或者写值了。否则,我们可能需要执行两次内存访问,因为对象可能被分放在两个8字节内存块中。

 总体来说:结构体的内存对齐是拿空间来换取时间的做法。

2.2.3. 改善方法

         我们在设计结构体的时候,我们既需要满足对齐,又要节省空间,因此,我们可以在创建结构体的时候,让占用空间小的成员集中在一起,如下:

struct S1
{char c;int i;char b;
};
struct S1
{char b;char c;int i;
};

 

         在这两组数据中,我们可以发现,他们的成员变量是一致的,但由于在创建时先后顺序不一致,致使他们在内存中存储情况不相同。

       2.3. 修改默认对齐数

            #pragma 这个预处理指令,可以改变编译器的默认对⻬数。

#include <stdio.h>
#pragma pack(1)//设置默认对⻬数为1
struct S
{char c1;int i;char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{//输出的结果是什么?printf("%d\n", sizeof(struct S));return 0;
}

 


3. 结构体实现传参


我们在传入参数的时候,有两种形式,一种是“传值输入”,另一种是“传址输入”。

struct S
{int data[1000];int num;
};
struct S s = {{1,2,3,4}, 1000};//结构体传参
void print1(struct S s)
{printf("%d\n", s.num);
}//结构体地址传参
void print2(const struct S* ps)
{printf("%d\n", ps->num);
}
int main()
{print1(s); //传结构体print2(&s); //传地址return 0;
}

通过实践说明 ,print2相对于print1,会更加优越,原因如下:

        1.   函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销
         2 . 如果传递⼀个结构体对象的时候,结构体过⼤,
         参数压栈的的系统开销⽐较⼤,所以会导致性能的下降

总而言之, 结构体传参的时候,我们要传递结构体的地址。

 


4 . 位段


     4.1. 什么是位段

我们可以定义一个结构体中的字段使用的位数(bit位)。这样可以在存储数据时更加灵活和节省空间。接着我们分析一下位段与结构体的一些差异,如下:

    1 . 位段的成员必须是 intunsigned int signed int ,在C99中位段成员的类型也可以选择其他类型
    2 .  位段的成员名后边有⼀个冒号和⼀个数字
struct A
{int _a:2;int _b:5;int _c:10;int _d:30;
};

     4.2. 位段的内存分配

          1. 位段的成员可以是 int unsigned int signed int 或者是 char 等类型
          2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的⽅式来开辟的。
          3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使⽤位段。
#include<stdio.h>
struct S
{char a : 3;char b : 4;char c : 5;char d : 4;
};
int main() {struct S s = { 0 };s.a = 10;s.b = 12;s.c = 3;s.d = 4;printf("%zd", sizeof(struct S ));return 0;
}

 

相对比结构体而言,位段有效地节省了空间大小 ,接下来,我们观察位段在内存中的具体情况

 

 

     4.3. 位段的跨平台问题

1 .  int 位段被当成有符号数还是无符号数是不确定的
2 . 位段中最大位的数目不能确定(16位机器最大16,32位机器上最大32)
3 . 位段中的成员在内存中从左向右分配,还是反之,标准尚未定义
4 . 当一个结构包含两个位段,第二个位段成员比较大,无法容纳第一个位段剩余的位时
     是选择舍弃还是继续利用,也是不确定的

     4.4. 位段的应用

        下图是⽹络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要⼏个bit位就能描述,这⾥ 使⽤位段,能够实现想要的效果,也节省了空间,这样⽹络传输的数据报⼤⼩也会较⼩⼀些,对⽹络 的畅通是有帮助的。

 

     4.5. 位段注意事项

        因为位段中的成员变量有可能在同一个字节上,因此有些成员的起始地址并不是某个字节的地址,那么这些位置其实就是没有地址的,再者说,内存中每个字节分配一个地址,故而一个字节内部的bit位是没有地址的。所以不能对位段的成员使⽤&操作符,这样就不能使⽤scanf直接给位段的成员输⼊值,只能是先⼊放在⼀个变量中,然后赋值给位段的成员。

struct A
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};
int main()
{struct A sa = {0};scanf("%d", &sa._b);//这是错误的//正确的⽰范int b = 0;scanf("%d", &b);sa._b = b;return 0;
}

d8385f1a0ee54905b83ab0e6bd609e36.jpeg

 8fb80a710692409b946db9d128e02434.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/341446.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SQL注入-时间盲注

SQL时间盲注&#xff08;Time-based Blind SQL Injection&#xff09;&#xff0c;又叫延时注入&#xff0c;是一种SQL注入攻击技术&#xff0c;用于在无法直接获取查询结果或查看响应内容变化的情况下&#xff0c;通过引入时间延迟来推断数据库的信息&#xff1b;时间盲注依赖…

tinyrenderer-切线空间法线贴图

法线贴图 法线贴图分两种&#xff0c;一种是模型空间中的&#xff0c;一种是切线空间中的 模型空间中的法线贴图的rgb代表着每个渲染像素法线的xyz&#xff0c;与顶点坐标处于一个空间&#xff0c;图片是五颜六色的。 切线空间中的法线贴图的rgb同样对应xyz&#xff0c;是切线…

可视化数据科学平台在信贷领域应用系列四:决策树策略挖掘

信贷行业的风控策略挖掘是一个综合过程&#xff0c;需要综合考虑风控规则分析结果、效果评估、线上实时监测和业务管理需求等多个方面&#xff0c;以发现和制定有效的信贷风险管理策略。这些策略可能涉及贷款审批标准的调整、贷款利率的制定、贷款额度的设定等&#xff0c;在贷…

低代码开发平台一般都有哪些功能和模块?

在当今快速变化的数字化时代&#xff0c;企业对于高效、灵活且经济的软件开发解决方案的需求愈发迫切。低代码开发平台应运而生&#xff0c;成为众多企业实现数字化转型的首选工具。本文将详细探讨低代码开发平台一般具备的主要功能和模块&#xff0c;以及它们如何助力企业提升…

Dinky MySQLCDC 整库同步到 Doris

资源&#xff1a;flink 1.17.0、dinky 1.0.2、doris-2.0.1-rc04 问题&#xff1a;Cannot deserialize value of type int from String &#xff0c;detailMessageunknowndatabases &#xff0c;not a valid int value 2024-05-29 16:52:20.136 ERROR org.apache.doris.flink.…

AI论文工具推荐

AI 在学术界的使用情况也比较疯狂&#xff0c;特别是一些美国大学&#xff0c;用 AI 来辅助阅读文献以及辅助写论文的越来越多&#xff0c;毕竟确实可以提高写作效率&#xff0c;特别是在文献综述和初稿生成方面。 但在科研界其实&#xff0c;发现看论文的速度已经赶不上发论文…

领夹麦克风什么牌子好?2024无线领夹麦克风十大品牌排行榜推荐

​如今&#xff0c;无线麦克风已逐渐渗透到我们日常生活的各个角落&#xff0c;无论是专业的自媒体创作者、带货主播&#xff0c;还是日常拍摄记录生活的我们&#xff0c;都可能用到它。在挑选无线麦克风时&#xff0c;收音降噪效果和性价比无疑是两大核心考量因素。为此&#…

【wiki知识库】05.分类管理实现--前端Vue模块

&#x1f4dd;个人主页&#xff1a;哈__ 期待您的关注 目录 一、&#x1f525;今日目标 二、&#x1f30f;前端部分的改造 2.1 新增一个tool.ts 2.2 新增admin-categoty.vue 2.3 添加新的路由规则 2.4 添加the-welcome.vue 2.5 修改HomeView.vue 三、❗注意 一、&…

The authenticity of host ‘github.com (20.205.243.166)‘ can‘t be established.

目录 github初始化仓库&#xff0c;无法链接 解决无法与主机github.com(20.205.243.166)建立真实性 # 问题原因 # 生成密钥 # 物理路径 # 建立交互 # 验证 github初始化仓库&#xff0c;无法链接 在github创建一个新的仓库时&#xff0c;如果我们未初始化&#xff0c;…

面试题vue+uniapp(个人理解-面试口头答述)未编辑完整....

1.vue2和vue3的区别&#xff08;vue3与vue2的区别&#xff08;你不知道细节全在这&#xff09;_vue2和vue3区别-CSDN博客&#xff09;参考 Vue3 在组合式&#xff08;Composition &#xff09;API&#xff0c;中使用生命周期钩子时需要先引入&#xff0c;而 Vue2 在选项API&am…

操作失败——后端

控制台观察&#xff0c;页面发送的保存菜品的请求 返回的response显示&#xff1a; ---------- 我开始查看明明感觉都挺正常&#xff0c;没啥错误&#xff0c;就是查不出来。结果后面电脑关机重启后&#xff0c;隔一天看&#xff0c;就突然可以了。我觉着可能是浏览器的缓存没…

2022.9.26DAY678

课程学习&#xff1a;《数据处理技术》讲了“数据查询”的语法格式&#xff0c;语法格式也算是简单&#xff0c;就是没能跟之前的内容联系起来&#xff0c;之前的内容没有及时回顾。 高等数学&#xff1a;“ 函数的概念”&#xff0c;讲了函数的概念&#xff0c;反函数&#…

登录通用解决方案 —— 第三方登录处理

目录 01: 前言 02: 第三方平台登录解决方案流程大解析 03: QQ 开放平台流程大解析 04: QQ 登录对接流程&#xff1a;获取 QQ 用户信息 05: QQ 登录对接流程&#xff1a;跨页面信息传输 06: QQ 登录对接流程&#xff1a;认证是否已注册&#xff0c;完成 QQ …

今日科普:了解、预防、控制高血压

高血压&#xff0c;常被称为“隐形的健康威胁”&#xff0c;许多患者可能在毫无预警的情况下发病&#xff0c;且患病率逐年攀升&#xff0c;同时患者群体逐渐年轻化&#xff0c;高血压虽然难以根治&#xff0c;但并不可怕&#xff0c;真正可怕的是血压长期居高不下&#xff0c;…

MySQL中所有常见知识点汇总

存储引擎 这一张是关于整个存储引擎的汇总知识了。 MySQL体系结构 这里是MySQL的体系结构图&#xff1a; 一般将MySQL分为server层和存储引擎两个部分。 其实MySQL体系结构主要分为下面这几个部分&#xff1a; 连接器&#xff1a;负责跟客户端建立连 接、获取权限、维持和管理…

低代码专题 | 什么是低代码?低代码是什么意思?最详细解释!

什么是低代码&#xff0c;低代码是什么意思&#xff1f;低代码到底有什么用&#xff1f;企业该如何用低代码赋能&#xff1f;......因为现在太多碎片化信息了&#xff0c;所以大家对于一个概念的理解都是零散的。 故给大家开一个专题&#xff0c;将低代码给大家掰开揉碎了讲清…

DevOps全面综述:从概念到实践

一、背景与概述 1.1 DevOps的起源与发展 DevOps&#xff08;Development and Operations的缩写&#xff09;是软件工程领域中的一种文化和实践方法&#xff0c;旨在促进开发团队与运维团队之间的协作&#xff0c;从而实现更高效、更可靠的软件交付。DevOps起源于敏捷软件开发方…

php实现抖音小程序支付

开发者发起下单_小程序_抖音开放平台 第一步、抖音小程序发起支付 tt.pay_小程序_抖音开放平台 前端提交订单数据到后端接口&#xff0c;然后使用 tt.pay发起支付 请求参数 属性 类型 必填 说明 order_id string 是 担保交易服务端订单号 order_token string 是 …

RocketMq源码解析五:生产者Producer发送消息

上一章我们把生产者启动的流程和大家一起跟着源码走了一遍,现在我们来看发送消息的流程。上一章我们已经把核心接口和类关系梳理了一遍。如下图 我们今天重点看MQProducer中的send方法最终的实现。DefaultMQProducer中,send的实现最终还是调用了 defaultMQProducerIm…

寺庙小程序-H5网页开发

大家好&#xff0c;我是程序员小孟。 现在有很多的产品或者工具都开始信息话了&#xff0c;寺庙或者佛教也需要小程序吗&#xff1f; 当然了&#xff01; 前面我们还开发了很多寺庙相关的小程序。 今天要介绍的是一款寺庙系统&#xff0c;该系统可以作为小程序、H5网页、安…