机器学习18个核心算法模型

1. 线性回归(Linear Regression)

用于建立自变量(特征)和因变量(目标)之间的线性关系。

核心公式:

简单线性回归的公式为: y\widetilde{} = \beta + \alpha x\widetilde{} , 其中 y\widetilde{}是预测值,\beta 是截距, \alpha是斜率, x\widetilde{}是自变量。

代码案例:

from sklearn.linear_model import LinearRegression
import numpy as np# 创建一些随机数据
X = np.array([[1], [2], [3], [4]])
y = np.array([2, 4, 6, 8])# 拟合模型
model = LinearRegression().fit(X, y)# 预测
y_pred = model.predict(X)print("预测值:", y_pred)

 

2. 逻辑回归(Logistic Regression)

用于处理分类问题,通过一个 S 形的函数将输入映射到 0 到 1 之间的概率。

核心公式:

逻辑回归的公式为:P (y = 1|x)= \frac{1}{1+e^{-|\beta +\alpha x|}} 其中P (y = 1|x)  是给定输入 x下预测 y = 1为 1 的概率,\beta是截距, \alpha是权重, e是自然常数。

代码案例:

from sklearn.linear_model import LogisticRegression
import numpy as np# 创建一些随机数据
X = np.array([[1], [2], [3], [4]])
y = np.array([0, 0, 1, 1])# 拟合模型
model = LogisticRegression().fit(X, y)# 预测
y_pred = model.predict(X)print("预测值:", y_pred)

 

3. 决策树(Decision Tree)

通过一系列决策来学习数据的分类规则或者数值预测规则,可解释性强

核心公式:

决策树的核心在于树的构建和节点分裂的规则,其本身没有明确的数学公式。

代码案例:

from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 载入数据
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型
model = DecisionTreeClassifier()
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

4. 支持向量机(Support Vector Machine,SVM)

用于分类和回归分析的监督学习模型,能够在高维空间中构造超平面或超平面集合,实现对数据的有效分类。

核心公式:

SVM 的目标是找到一个最优超平面,使得两个类别的间隔最大化。分类器的决策函数为:

f(x) = \sin (\sum_{i=1}^{N}\alpha_{i}y_{i} K(x_{i},x)+b) 其中  N是要分类的样本,x_{i} 是支持向量,y_{i} 是对应支持向量的系数,\alpha _{i} 是支持向量的标签, K(x_{i},x)是核函数, b 是偏置。

代码案例:

from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 载入数据
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型
model = SVC()
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

 

5. 朴素贝叶斯(Naive Bayes)

基于贝叶斯定理和特征条件独立假设的分类算法,常用于文本分类和垃圾邮件过滤。

核心公式:

朴素贝叶斯分类器基于贝叶斯定理计算后验概率,其公式为:P(y|x_{1},x_{2} , ...,x_{n}) = \frac{P(y)P(x_{1},x_{2} , ...,x_{n}|P(y))}{P(x_{1},x_{2} , ...,x_{n})}其中P(y|x_{1},x_{2} , ...,x_{n})是给定特征x_{1},x_{2} , ...,x_{n}下类别y的后验概率,P(y)是类别y的先验概率P(x_{i}|P(y))是在类别y下特征x_{i}的条件概率,P(x_{1},x_{2} , ...,x_{n})是特征x_{1},x_{2} , ...,x_{n} 的联合概率。

代码案例:

from sklearn.naive_bayes import GaussianNB
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 载入数据
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型
model = GaussianNB()
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

6. K近邻算法(K-Nearest Neighbors,KNN)

一种基本的分类和回归方法,它的基本假设是“相似的样本具有相似的输出”。

核心公式:

KNN 的核心思想是根据输入样本的特征,在训练集中找到与之最接近的  个样本,然后根据这  个样本的标签来预测输入样本的标签。没有明确的数学公式,其预测公式可以简单表示为投票机制。

代码案例:

from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 载入数据
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型
model = KNeighborsClassifier()
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

 

7. 聚类算法(Clustering)

聚类是一种无监督学习方法,将数据集中的样本划分为若干组,使得同一组内的样本相似度较高,不同组之间的样本相似度较低。

核心公式:

常见的聚类算法包括 K 均值聚类和层次聚类等,它们的核心在于距离计算和簇的更新规则。

代码案例:

这里以 K 均值聚类为例。

from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt# 创建一些随机数据
X, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)# 训练模型
model = KMeans(n_clusters=4)
model.fit(X)# 可视化聚类结果
plt.scatter(X[:, 0], X[:, 1], c=model.labels_, s=50, cmap='viridis')
centers = model.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.5)
plt.show()

8. 神经网络(Neural Networks)

神经网络是一种模拟人脑神经元网络的计算模型,通过调整神经元之间的连接权重来学习数据的复杂关系。

核心公式:

神经网络的核心在于前向传播和反向传播过程,其中涉及到激活函数、损失函数等。

代码案例:

这里以使用 TensorFlow 实现一个简单的全连接神经网络为例。

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 创建一些随机数据
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 构建神经网络模型
model = Sequential([Dense(64, activation='relu', input_shape=(20,)),Dense(64, activation='relu'),Dense(1, activation='sigmoid')
])# 编译模型
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))# 评估模型
loss, accuracy = model.evaluate(X_test, y_test)
print("准确率:", accuracy)

 

9. 集成方法(Ensemble Methods)

集成方法通过组合多个基分类器(或回归器)的预测结果来改善泛化能力和准确性。

核心公式:

集成方法的核心在于不同的组合方式,常见的包括 Bagging、Boosting 和随机森林等。

代码案例:

这里以随机森林为例。

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 载入数据
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

 

10. 降维算法(Dimensionality Reduction)

降维算法用于减少数据集的维度,保留数据集的重要特征,可以用于数据可视化和提高模型性能。

核心公式:

主成分分析(PCA)是一种常用的降维算法,其核心是通过线性变换将原始数据映射到一个新的坐标系中,选择新坐标系上方差最大的方向作为主要特征。

代码案例:

from sklearn.decomposition import PCA
from sklearn.datasets import load_iris# 载入数据
iris = load_iris()
X = iris.data# 使用 PCA 进行降维
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)print("降维后的数据维度:", X_pca.shape)

11. 主成分分析(Principal Component Analysis,PCA)

主成分分析是一种常用的降维算法,用于发现数据中的主要特征。

核心公式:

PCA 的核心是特征值分解,将原始数据的协方差矩阵分解为特征向量和特征值,通过选取特征值较大的特征向量进行降维。

代码案例:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris# 载入数据
iris = load_iris()
X = iris.data
y = iris.target# 使用 PCA 进行降维
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)# 可视化降维结果
plt.figure(figsize=(8, 6))
for i in range(len(np.unique(y))):
plt.scatter(X_pca[y == i, 0], X_pca[y == i, 1], label=iris.target_names[i])
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.title('PCA of IRIS dataset')
plt.legend()
plt.show()

 

12. 支持向量回归(Support Vector Regression,SVR)

SVR 是一种使用支持向量机(SVM)进行回归分析的方法,能够有效处理线性和非线性回归问题。

核心公式:

SVR 的核心在于损失函数的定义和对偶问题的求解,其目标是最小化预测值与真实值之间的误差,同时保持预测值尽可能接近真实值。具体公式比较复杂,无法简单表示。

代码案例:

from sklearn.svm import SVR
import numpy as np
import matplotlib.pyplot as plt# 创建一些随机数据
X = np.sort(5 * np.random.rand(100, 1), axis=0)
y = np.sin(X).ravel()# 添加噪声
y[::5] += 3 * (0.5 - np.random.rand(20))# 训练模型
model = SVR(kernel='rbf', C=100, gamma=0.1, epsilon=.1)
model.fit(X, y)# 预测
X_test = np.linspace(0, 5, 100)[:, np.newaxis]
y_pred = model.predict(X_test)# 可视化结果
plt.scatter(X, y, color='darkorange', label='data')
plt.plot(X_test, y_pred, color='navy', lw=2, label='prediction')
plt.xlabel('data')
plt.ylabel('target')
plt.title('Support Vector Regression')
plt.legend()
plt.show()

 

13. 核方法(Kernel Methods)

核方法是一种通过在原始特征空间中应用核函数来学习非线性模型的方法,常用于支持向量机等算法。

核心公式:

核方法的核心在于核函数的选择和应用,常见的核函数包括线性核、多项式核和高斯核等,其具体形式取决于核函数的选择。

代码案例:

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import numpy as np# 创建一些随机数据
X, y = make_classification(n_samples=100, n_features=2, n_informative=2, n_redundant=0, random_state=42)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 定义一个高斯核支持向量机模型
model = SVC(kernel='rbf', gamma='scale', random_state=42)# 训练模型
model.fit(X_train, y_train)# 可视化决策边界
plt.figure(figsize=(8, 6))
h = .02
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.coolwarm, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.coolwarm)
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title('SVM with RBF Kernel')
plt.show()

13. 核方法(Kernel Methods)

核方法是一种通过在原始特征空间中应用核函数来学习非线性模型的方法,常用于支持向量机等算法。

核心公式:

核方法的核心在于核函数的选择和应用,常见的核函数包括线性核、多项式核和高斯核等,其具体形式取决于核函数的选择。

代码案例:

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import numpy as np# 创建一些随机数据
X, y = make_classification(n_samples=100, n_features=2, n_informative=2, n_redundant=0, random_state=42)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 定义一个高斯核支持向量机模型
model = SVC(kernel='rbf', gamma='scale', random_state=42)# 训练模型
model.fit(X_train, y_train)# 可视化决策边界
plt.figure(figsize=(8, 6))
h = .02
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.coolwarm, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.coolwarm)
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title('SVM with RBF Kernel')
plt.show()

 

15. 随机森林(Random Forest)

随机森林是一种集成学习方法,通过构建多个决策树来提高分类性能,具有良好的抗过拟合能力和稳定性。

核心公式:

随机森林的核心在于决策树的集成方式和随机性的引入,具体公式比较复杂,涉及到决策树的建立和集成规则。

代码案例:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score# 载入数据
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 定义一个随机森林模型
model = RandomForestClassifier(n_estimators=100, random_state=42)# 训练模型
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

 

16. 梯度提升(Gradient Boosting)

梯度提升是一种集成学习方法,通过逐步训练新模型来改善已有模型的预测能力,通常使用决策树作为基础模型。

核心公式:

梯度提升的核心在于损失函数的优化和模型的更新规则,其核心思想是在每一步迭代中拟合一个新模型来拟合之前模型的残差,从而逐步减小残差。

代码案例:

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 载入数据
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型
model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, random_state=42)
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

17. AdaBoost(Adaptive Boosting)

AdaBoost 是一种集成学习方法,通过串行训练多个弱分类器,并加大误分类样本的权重来提高分类性能。

核心公式:

AdaBoost 的核心在于样本权重的更新规则和基分类器的组合方式,具体公式涉及到样本权重的调整和分类器权重的更新。

代码案例:

from sklearn.ensemble import AdaBoostClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 载入数据
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型
model = AdaBoostClassifier(n_estimators=100, learning_rate=0.1, random_state=42)
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

 

18. 深度学习(Deep Learning)

深度学习是一种基于人工神经网络的机器学习方法,其核心思想是通过多层非线性变换来学习数据的表示。

核心公式:

深度学习涉及到多层神经网络的构建和优化,其中包括前向传播和反向传播等过程,具体公式和算法较为复杂。

代码案例:

这里以使用 TensorFlow 实现一个简单的深度神经网络(多层感知器)为例。

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 创建一些随机数据
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 构建深度神经网络模型
model = Sequential([Dense(64, activation='relu', input_shape=(20,)),Dense(64, activation='relu'),Dense(1, activation='sigmoid')
])# 编译模型
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))# 评估模型
loss, accuracy = model.evaluate(X_test, y_test)
print("准确率:", accuracy)

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/341457.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

leetcode第867题:转置矩阵

matrix[i][j]需要放在转置矩阵的(j,i)位置 public class Solution {public int[][] Transpose(int[][] matrix) {int rows matrix.Length; int columns matrix[0].Length; int[][] array2 new int[columns][];// 初始化内部数组(列数)for (int i 0…

MySQL数据库常见工具的基础使用_1

在上一篇文章中提到了对MySQL数据库进行操作的一些常见工具 mysqlcheck mysqlcheck是一个用于数据库表的检查,修复,分析和优化的一个客户端程序 分析的作用是查看表的关键字分布,能够让sql生成正确的执行计划(支持InnoDB,MyISAM,NDB)检查的作用是检查…

Linux系统编程(七)网络编程TCP、UDP

本文目录 一、基础知识点1. IP地址2. 端口3. 域名4. 网络协议类型5. IP协议类型6. 字节序7. socket套接字 二、TCP 常用API1. socket套接字描述符2. bind套接字绑定3. listen设置最大排队数4. accept接收客户端请求5. connect连接服务端6. read读取数据7. write发送数据 三、UD…

240.搜索二维矩阵

题目描述 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性: 每行的元素从左到右升序排列。每列的元素从上到下升序排列。 示例 1: 输入:matrix [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,…

【AI大模型】基于Langchain和Openai借口实现英文翻译中文应用

🚀 作者 :“大数据小禅” 🚀 文章简介 :本专栏后续将持续更新大模型相关文章,从开发到微调到应用,需要下载好的模型包可私。 🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬 目…

CSPM.pdf

PDF转图片 归档:

C盘清理攻略!!!详细步骤

c盘爆满怎么清,往下看 一、清缓存文件键盘winr打开运行窗口,输入:%temp% 二、清理安装包文件键盘winr打开运行窗口,输入:softwaredistribution 三、清理软件解压临时文件键盘winr打开运行窗口,输入&#xf…

【C语言】结构体(及位段)

你好!感谢支持孔乙己的新作,本文就结构体与大家分析我的思路。 希望能大佬们多多纠正及支持 !!! 个人主页:爱摸鱼的孔乙己-CSDN博客 欢迎 互粉哦🙈🙈! 目录 1. 声明结构…

SQL注入-时间盲注

SQL时间盲注(Time-based Blind SQL Injection),又叫延时注入,是一种SQL注入攻击技术,用于在无法直接获取查询结果或查看响应内容变化的情况下,通过引入时间延迟来推断数据库的信息;时间盲注依赖…

tinyrenderer-切线空间法线贴图

法线贴图 法线贴图分两种,一种是模型空间中的,一种是切线空间中的 模型空间中的法线贴图的rgb代表着每个渲染像素法线的xyz,与顶点坐标处于一个空间,图片是五颜六色的。 切线空间中的法线贴图的rgb同样对应xyz,是切线…

可视化数据科学平台在信贷领域应用系列四:决策树策略挖掘

信贷行业的风控策略挖掘是一个综合过程,需要综合考虑风控规则分析结果、效果评估、线上实时监测和业务管理需求等多个方面,以发现和制定有效的信贷风险管理策略。这些策略可能涉及贷款审批标准的调整、贷款利率的制定、贷款额度的设定等,在贷…

低代码开发平台一般都有哪些功能和模块?

在当今快速变化的数字化时代,企业对于高效、灵活且经济的软件开发解决方案的需求愈发迫切。低代码开发平台应运而生,成为众多企业实现数字化转型的首选工具。本文将详细探讨低代码开发平台一般具备的主要功能和模块,以及它们如何助力企业提升…

Dinky MySQLCDC 整库同步到 Doris

资源:flink 1.17.0、dinky 1.0.2、doris-2.0.1-rc04 问题:Cannot deserialize value of type int from String ,detailMessageunknowndatabases ,not a valid int value 2024-05-29 16:52:20.136 ERROR org.apache.doris.flink.…

AI论文工具推荐

AI 在学术界的使用情况也比较疯狂,特别是一些美国大学,用 AI 来辅助阅读文献以及辅助写论文的越来越多,毕竟确实可以提高写作效率,特别是在文献综述和初稿生成方面。 但在科研界其实,发现看论文的速度已经赶不上发论文…

领夹麦克风什么牌子好?2024无线领夹麦克风十大品牌排行榜推荐

​如今,无线麦克风已逐渐渗透到我们日常生活的各个角落,无论是专业的自媒体创作者、带货主播,还是日常拍摄记录生活的我们,都可能用到它。在挑选无线麦克风时,收音降噪效果和性价比无疑是两大核心考量因素。为此&#…

【wiki知识库】05.分类管理实现--前端Vue模块

📝个人主页:哈__ 期待您的关注 目录 一、🔥今日目标 二、🌏前端部分的改造 2.1 新增一个tool.ts 2.2 新增admin-categoty.vue 2.3 添加新的路由规则 2.4 添加the-welcome.vue 2.5 修改HomeView.vue 三、❗注意 一、&…

The authenticity of host ‘github.com (20.205.243.166)‘ can‘t be established.

目录 github初始化仓库,无法链接 解决无法与主机github.com(20.205.243.166)建立真实性 # 问题原因 # 生成密钥 # 物理路径 # 建立交互 # 验证 github初始化仓库,无法链接 在github创建一个新的仓库时,如果我们未初始化,…

面试题vue+uniapp(个人理解-面试口头答述)未编辑完整....

1.vue2和vue3的区别(vue3与vue2的区别(你不知道细节全在这)_vue2和vue3区别-CSDN博客)参考 Vue3 在组合式(Composition )API,中使用生命周期钩子时需要先引入,而 Vue2 在选项API&am…

操作失败——后端

控制台观察,页面发送的保存菜品的请求 返回的response显示: ---------- 我开始查看明明感觉都挺正常,没啥错误,就是查不出来。结果后面电脑关机重启后,隔一天看,就突然可以了。我觉着可能是浏览器的缓存没…

2022.9.26DAY678

课程学习:《数据处理技术》讲了“数据查询”的语法格式,语法格式也算是简单,就是没能跟之前的内容联系起来,之前的内容没有及时回顾。 高等数学:“ 函数的概念”,讲了函数的概念,反函数&#…