Prompt工程与实践

在这里插入图片描述
在这里插入图片描述

Prompt工程与实践

一、Prompt与大模型

1.1 大模型的定义

大模型本质上就是一个概率生成模型,该模型的模型参数足够大,并且在训练过程中阅读了非常多的各个领域的语料。这个时候,如果通过一个正确的、有效的指令去引导这个模型,就能够生成我们想要的内容。

1.2 大模型的用途
  • 信息抽取

将长段文字提取出结构化信息

  • 信息检索

通读结果并根据你的查询生成针对性的回答

  • 对话系统

根据制定规则进行对话

  • 辅助开发

辅助编写代码,降低门槛

  • Agent

Agent模型加上外围的技术架构可以让大模型去完成一个具体的任务,将任务背后的若干个工作都做好。

请添加图片描述

其中的智能工单系统就一边跟你沟通,一边去调用后端的一些接口,将自身的诉求下发到接口里帮助你直接去问完成。比如说智能导购系统,通过我们在前端构建一个用户和这个机器的一个聊天的一个交互的界面,然后在背面我们把更多丰富的像商品搜索的接口、下订单的接口都连接起来,让用户和模型在对话的过程中,执行各种后端的工具,完成一个闭环的完整任务。

Agent的价值就是模型可以充分利用多个API,换而言之,每个人都可以构建一个垂直领域的Agent的机器人,然后调用平台各种开发的工具,完成自己想让他完成的一个特定领域的任务。

请添加图片描述

预训练环节是模型厂商会大量做的工作,目的是让模型具备一个基础的智能,然后它可以面对各行各业的问题,能够有一个比较好的基础的认知,能够去分析、推理。进一步到了这个具体的场景当中,我们可以通过微调和指令工程这俩个方式,然后去调用大模型的能力去解决具体的业务问题。特别是微调这个环节,可以使用较多的监督性语料,从而去改变模型的参数,使其在这个具体的事情上做得更加充分。

对于指令工程,我们要考虑**如何用工程化的方式写好一个指令?**它没有特别多的模板,更多的是一些指导性的思路。我个人的建议是,**写好一个Prompt,在刚接触的情况下,可以先基于一些基本的框架进行套用,结合原理以及一些指导性的思路对指令进行添加和改写。**如果在可以的情况下,可以预先准备好数据集,包含了InputOutputOutput tipsReason等等部分,并且不断地通过LLM的反馈来进一步修正Prompt。

二、Prompt框架

不同的任务类型对应不同的Prompt框架,不同的Prompt框架对应不同的思考逻辑;每个框架都有自身适合的场景。

2.1 CO-STAR框架
介绍

CO-STAR Framework是最新一届的新加坡政府举办的Prompt工程大赛的冠军选手的框架,可以予以借鉴。

如何应用CO-STAR框架:

·©上下文:为任务提供背景信息,通过为大语言模型(LLM)提供详细的背景信息,可以帮助它精确理解讨论的具体场景,确保提供的反馈具有相关性。
·(O)目标:明确你要求大语言模型完成的任务 清晰地界定任务目标,可以使大语言模型更专注地调整其回应,以实现这一具体目标
·(S)风格:明确你期望的写作风格 你可以指定一个特定的著名人物成某个行业专家的写作风格。如商业分析师或CEO。这将指导大语言模型以一种符合你需求的方式和词汇选择进行回应。
·(T)语气:设置回应的情感调 设定话当的语气,确保大语言模型的回应能够与预测的情感或情绪背景相协调。可能的语气包括正式、幽默、富有同情心等。
·(A)受众:识别目标受众 针对特定受众定制大语言模型的回应,无论是领域内的专家,初学者还是儿童,都能确保内容在特定上下文中适当且容易理解。
·®响应:规定输出的格式 确定输出格式是为了确保大语言模型按照你的具体需求进行输出,便于执行下游任务。常见的格式包括列表、JSON格式的数据、专业报告等。对于大部分需要程序化处理大语言模型输出的应用来说,JSON格式是理想的选择。

2.2 其他框架

请添加图片描述

请添加图片描述

  • ICIO框架

将指令的内容分为四个部分,第一部分是介绍角色、任务和背景知识,第二部分是给出执行的步骤、思维链、样例数据,第三部分是给出输入数据,第四部分是给出输出的定义和指引。

  • LangGPT

这个框架更偏向开发,给了很多的细节要求,里面有一部分涉及到洞察力,比如说工程师需要自行判断这个指令的目标用户是什么?因此写指令不仅需要我们的逻辑能力,也需要我们的产品能力。

三、Prompt原则

3.1 清晰明确

请添加图片描述

可以考虑将我的理想输出内容细化为多个部分,限定字数,来使其更加清晰明确。

3.2 给模型思考的空间和路径

请添加图片描述

将模型做这件事情的思考过程尽可能地讲清楚,比如说在标黄的三部分,对开头、主体和结尾三大部分给模型一个具体的思考逻辑。写好一个指令的前提是需要有一个清晰的目标,有些问题可能比较有难度,光给他目标也不够,此时就应该附加一些具体的思考逻辑和路径。

四、Prompt的指导性思路

4.1 Few Shot

请添加图片描述

给出示例来解释内容

Few Shot其实是一个Context Learning的思路,通过说不改变模型的思路,仅仅通过指令的上下文窗口去调优模型生产内容,提供一些示例,让模型自己去学

4.2 COT(Chain Of Thought)

让其输出思考过程,将COT量化出来,提升模型输出的准确性。

请添加图片描述

进一步强化的话,可以给一些具体的COT的示例。

4.3 Temperature

temperature用于控制模型输出内容的多样性。temperature越低,内容越稳定;temperature越高,内容越多样。

利用指令追求正确性的过程中,大模型的创造性在很多场景对于一些难题或者一些需要创造性答案的题很有帮助。

请添加图片描述

4.4 top_p

top_p影响每次输出选词集中的程度。

top_p越低,选词词数越集中;top_p越高,选词词数越发散。

请添加图片描述

4.5 Tree Of Thought

将任务拆分为多个子任务,再通过不同的Prompt指令进行实现。

请添加图片描述

4.6 Agent

此处我们以定义一个"智能客服"的Agent为例。

第一部分我要在其中定义好工具,对于一个智能客服,我们需要定义像订单情况的查询,天气的查询计算器,政策赔偿查询等等。第二部分是我要告诉指令你该怎么去做思考,遇到每个工具返回的过程性结果,应该如何去做思考?第三部分是对于每个思考,都需要有具体的行动和调用的工具,最终得到Final Action,做出行动。

Agent的明显优势就是能够独立完成一个完整的任务,这对Prompt工程设计的要求程度更高,我们至少要定义清楚这个工具的用途,以便让模型知道应该调用哪个工具,并且需要告诉模型在这个场景下应该去如何拆解任务。因此大家可以看到,随着模型能力的不断增强,指令在这其中发挥的作用只会越来越大。

五、Prompt Engineering是什么

  • 迭代:没有人能直接写出100分的指令
  • 评测:像训练算法模型一样优化你的指令

我们需要==通过评测集==对指令不断地去调优,判断该指令是否能够放到生产环境中去用。

六、调优Prompt

Prompt的调优一般从内容结构两个方面进行入手。

6.1 从内容上调优指令
  • 角色迭代

告知大模型他应该扮演的角色,例如"你是口语对话教练"

  • 任务迭代

对于指令中的关键动作,尝试不同的近义词或其他相近的描述来提升准确性。

请添加图片描述

避免负向指令,通过更换概念等方式,尽量告诉模型应该输出什么。

请添加图片描述

逻辑完备,避免在"无"的时候,大模型自由发挥、臆造信息。

请添加图片描述

请添加图片描述

  • Few Shot迭代

请添加图片描述

使添加的样例比例更加均匀。

6.2 从结构上迭代指令
  • 分隔符:将文本上下文、不同的知识模块做分隔,避免无关知识模块的影响。

请添加图片描述

  • 分条目

  • 顺序

先输出的内容会影响后输出的内容。可尝试不同的顺序,避免提取项之间的干扰,找到最佳的提取效果。

请添加图片描述

  • 嵌套

对于每一个要求尽量让模型都独立的做出判断

请添加图片描述

  • 位置

指令的首部和尾部的指令遵循效果较好,适当的调整位置

请添加图片描述

七、指令工程实战

7.1 用户情绪识别

1.增加COT,告知思考过程,是如何判断正向还是负向的?

请添加图片描述

2.将具体的细节表述得更清晰

请添加图片描述

3.在正向、负向、中性情绪的判断增加一些Few Shot

请添加图片描述

4.对输出的格式进行强约束

请添加图片描述

  • 给文章打分(从文章中抽取信息)

请添加图片描述

  • 赋予角色
  • 添加修辞关键特征、分析原因

请添加图片描述

  • 加示例、引号强调

请添加图片描述

  • 增添一些反面示例

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/342553.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

javascript导入excel文件

导入文件用到一个 xlsx.core.js 的包。 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><script type"tex…

[Python]用Qt6和Pillow实现截图小工具

本文章主要讲述的内容是&#xff0c;使用python语言借助PyQt6和Pillow库进行简单截图工具的开发&#xff0c;含义一个简单的范围裁剪和软件界面。 主要解决的问题是&#xff0c;在高DPI显示屏下&#xff0c;坐标点的偏差导致QWidget显示图片不全、剪裁范围偏差问题。 适合有一点…

性能飙升50%,react-virtualized-list如何优化大数据集滚动渲染

在处理大规模数据集渲染时&#xff0c;前端性能常常面临巨大的挑战。本文将探讨 react-virtualized-list 库如何通过虚拟化技术和 Intersection Observer API&#xff0c;实现前端渲染性能飙升 50% 的突破&#xff01;除此之外&#xff0c;我们一同探究下该库还支持哪些新的特性…

前端传参数后端变量类型能够接受到List却无法接收到值

问题描述 今天写了个接口&#xff0c;下图所示 ReqVO里是这样的&#xff1a; 然后前端去请求&#xff0c;从请求结果中看发现这里值是在的&#xff08;有经验的可能就看出来了otherInfo.id: 这样以参数后端是接收不到的&#xff0c;但是当时没发现&#xff09; 传进来后端…

第二十六章CSS3续~

3.CSS3渐变属性 CSS3渐变(gradients)可以在两个或多个指定的颜色之间显示平稳的过渡。 以前&#xff0c;我们必须使用图像来实现这些效果。但是&#xff0c;通过使用CSS3渐变(gradients)&#xff0c;可以减少下载的事件和宽带的使用。由于渐变(gradient)是由浏览器生成的&…

初学者如何对大模型进行微调?

粗略地说&#xff0c;大模型训练有四个主要阶段&#xff1a;预训练、有监督微调、奖励建模、强化学习。 预训练消耗的时间占据了整个训练pipeline的99%&#xff0c;其他三个阶段是微调阶段&#xff0c;更多地遵循少量 GPU 和数小时或数天的路线。预训练对于算力和数据的要求非…

java第二十课 —— 面向对象习题

类与对象练习题 编写类 A01&#xff0c;定义方法 max&#xff0c;实现求某个 double 数组的最大值&#xff0c;并返回。 public class Chapter7{public static void main(String[] args){A01 m new A01();double[] doubleArray null;Double res m.max(doubleArray);if(res !…

【Qt知识】disconnect

在Qt框架中&#xff0c;disconnect函数用于断开信号与槽之间的连接。当不再需要某个信号触发特定槽函数时&#xff0c;或者为了防止内存泄漏和重复执行问题&#xff0c;你可以使用disconnect来取消这种关联。disconnect函数的基本用法可以根据不同的需求采用多种形式&#xff0…

【Python学习1】matplotlib和pandas库绘制人口数变化曲线

✍&#x1f3fb;记录学习过程中的输出&#xff0c;坚持每天学习一点点~ ❤️希望能给大家提供帮助~欢迎点赞&#x1f44d;&#x1f3fb;收藏⭐评论✍&#x1f3fb;指点&#x1f64f; 一、Python库说明 Matplotlib Matplotlib是一个功能强大的Python 2D绘图库&#xff0c;它允…

【Linux网络】传输层协议 - UDP

文章目录 一、传输层&#xff08;运输层&#xff09;运输层的特点复用和分用再谈端口号端口号范围划分认识知名端口号&#xff08;Well-Know Port Number&#xff09;两个问题① 一个进程是否可以绑定多个端口号&#xff1f;② 一个端口号是否可以被多个进程绑定&#xff1f; n…

最大的游戏交流社区Steam服务器意外宕机 玩家服务受影响

易采游戏网6月3日消息&#xff1a;众多Steam游戏玩家报告称&#xff0c;他们无法访问Steam平台上的个人资料、好友列表和社区市场等服务。同时&#xff0c;社区的讨论功能也无法正常使用。经过第三方网站SteamDB的确认&#xff0c;&#xff0c;这一现象是由于Steam社区服务器突…

德国西门子论未来质量管理 - 如何与明天相遇?

未来制造业的质量 -- 如何用软件方案满足质量要求 作者&#xff1a;Bill Butcher 翻译&编辑&#xff1a;数字化营销工兵 【前言】在Frost&Sullivan最近发表的一份白皮书中&#xff0c;他们讨论了制造业的质量投资。质量是制造过程的关键要素&#xff0c;但似乎比其他…

《精通ChatGPT:从入门到大师的Prompt指南》大纲目录

第一部分&#xff1a;入门指南 第1章&#xff1a;认识ChatGPT 1.1 ChatGPT是什么 1.2 ChatGPT的应用领域 1.3 为什么需要了解Prompt 第2章&#xff1a;Prompt的基本概念 2.1 什么是Prompt 2.2 好Prompt的特征 2.3 常见的Prompt类型 第二部分&#xff1a;Prompt设计技巧 第…

MySQL报ERROR 2002 (HY000)解决

今天在连接客户服务器时MySQL的时候报: ERROR 2002 (HY000): Can’t connect to local MySQL server through socket ‘/tmp/mysql/mysql.sock’ (2) [rootXXX ~]# mysql -uroot -p Enter password: ERROR 2002 (HY000): Can’t connect to local MySQL server through socket…

【高校科研前沿】新疆生地所陈亚宁研究员团队在GeoSus发文:在1.5°C和2°C全球升温情景下,中亚地区暴露于极端降水的人口增加

目录 文章简介 1.研究内容 2.相关图件 3.文章引用 文章简介 论文名称&#xff1a;Increased population exposures to extreme precipitation in Central Asia under 1.5 ◦C and 2 ◦C global warming scenarios&#xff08;在1.5C和2C全球变暖情景下&#xff0c;中亚地区…

服务器硬件基础知识学习

服务器硬件基础知识涵盖了从CPU到存储&#xff0c;再到网络连接和总线技术等关键组件。 1. 处理器 - 两大流派&#xff1a;我们常用的处理器主要分为Intel和AMD两大阵营。Intel的Xeon系列和AMD的EPYC系列都是专为服务器设计的&#xff0c;它们支持多核处理&#xff0c;能够应对…

【ARFoundation自学05】人脸追踪(AR Face manager)实现

1. 修改摄像机朝向渲染方式-选中user 这个方式就会调用前置摄像头 2 创建 AR Session、XR Origin&#xff0c;然后在XR Origin上面添加组件 注意&#xff1a;XR Origin 老版本仍然叫 AR Session Origin 接下来在XR Origin上面添加AR Face Manager组件&#xff0c;如下图&am…

【算法速查】万字图解带你快速入门八大排序(下)

君兮_的个人主页 即使走的再远&#xff0c;也勿忘启程时的初心 C/C 游戏开发 Hello,米娜桑们&#xff0c;这里是君兮_&#xff0c;首先在这里祝大家中秋国庆双节同乐&#xff01;&#xff01;抓住假期的小尾巴&#xff0c;今天来把算法速查的八大排序的后续写完&#xff0c;当…

【数据结构】C语言实现二叉树的基本操作——二叉树的遍历(先序遍历、中序遍历、后序遍历)

C语言实现二叉树的基本操作 导读一、二叉树的遍历二、先序遍历三、中序遍历四、后序遍历五、结点序列六、递归算法与非递归算法的转化结语 导读 大家好&#xff0c;很高兴又和大家见面啦&#xff01;&#xff01;&#xff01; 通过前面的介绍&#xff0c;我们已经认识了二叉树…

一文搞懂常见的数据拆分方案

常见的几种数据拆分方案 1、客户端分片 直接在应用层实现读取分片规则&#xff0c;解析规则&#xff0c;根据规则实现切分逻辑。 这种方案优缺点&#xff1a; 侵入业务(缺点)&#xff1b; 实现简单&#xff0c;适合快速上线&#xff0c;容易定位问题&#xff1b; 对开发人员…